dataset: name: mvtec #options: [mvtec, btech, folder] format: mvtec path: ./datasets/MVTec category: bottle task: classification image_size: 256 train_batch_size: 32 test_batch_size: 32 num_workers: 36 transform_config: train: null val: null create_validation_set: false model: name: dfm backbone: resnet18 layer: layer3 pooling_kernel_size: 4 pca_level: 0.97 score_type: fre # nll: for Gaussian modeling, fre: pca feature reconstruction error project_path: ./results normalization_method: min_max # options: [null, min_max, cdf] threshold: image_default: 0 adaptive: true metrics: image: - F1Score - AUROC pixel: - F1Score - AUROC project: seed: 42 path: ./results log_images_to: [] logger: false # options: [tensorboard, wandb, csv] or combinations. # PL Trainer Args. Don't add extra parameter here. trainer: accelerator: auto # <"cpu", "gpu", "tpu", "ipu", "hpu", "auto"> accumulate_grad_batches: 1 amp_backend: native auto_lr_find: false auto_scale_batch_size: false auto_select_gpus: false benchmark: false check_val_every_n_epoch: 1 # Don't validate before extracting features. default_root_dir: null detect_anomaly: false deterministic: false enable_checkpointing: true enable_model_summary: true enable_progress_bar: true fast_dev_run: false gpus: null # Set automatically gradient_clip_val: 0 ipus: null limit_predict_batches: 1.0 limit_test_batches: 1.0 limit_train_batches: 1.0 limit_val_batches: 1.0 log_every_n_steps: 50 log_gpu_memory: null max_epochs: 1 max_steps: -1 max_time: null min_epochs: null min_steps: null move_metrics_to_cpu: false multiple_trainloader_mode: max_size_cycle num_nodes: 1 num_processes: 1 num_sanity_val_steps: 0 overfit_batches: 0.0 plugins: null precision: 32 profiler: null reload_dataloaders_every_n_epochs: 0 replace_sampler_ddp: true strategy: null sync_batchnorm: false tpu_cores: null track_grad_norm: -1 val_check_interval: 1.0 # Don't validate before extracting features.