Spaces:
Build error
Build error
| # Copyright 2020 The HuggingFace Evaluate Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ classification_report metric. """ | |
| from sklearn.metrics import classification_report | |
| import evaluate | |
| import datasets | |
| _DESCRIPTION = """ | |
| Build a text report showing the main classification metrics that are accuracy, precision, recall and F1. | |
| """ | |
| _KWARGS_DESCRIPTION = """ | |
| Args: | |
| predictions (`list` of `int`): Predicted labels. | |
| references (`list` of `int`): Ground truth labels. | |
| labels (`list` of `int`): Optional list of label indices to include in the report. Defaults to None. | |
| target_names: (`list` of `str`): Optional display names matching the labels (same order). Defaults to None. | |
| sample_weight (`list` of `float`): Sample weights. Defaults to None. | |
| digits (`int`): Number of digits for formatting output floating point values. When output_dict is True, this will be ignored and the returned values will not be rounded. Defaults to 2. | |
| zero_division (`warn`, `0` or `1`): Sets the value to return when there is a zero division. If set to “warn”, this acts as 0, but warnings are also raised. Defaults to `warn`. | |
| Returns: | |
| report (`str` or `dict`): Text summary of the precision, recall, F1 score for each class. Dictionary returned if output_dict is True. Dictionary has the following structure: | |
| ``` | |
| {'label 1': {'precision':0.5, | |
| 'recall':1.0, | |
| 'f1-score':0.67, | |
| 'support':1}, | |
| 'label 2': { ... }, | |
| ... | |
| } | |
| ``` | |
| The reported averages include macro average (averaging the unweighted mean per label), weighted average (averaging the support-weighted mean per label), and sample average (only for multilabel classification). Micro average (averaging the total true positives, false negatives and false positives) is only shown for multi-label or multi-class with a subset of classes, because it corresponds to accuracy otherwise and would be the same for all metrics. See also precision_recall_fscore_support for more details on averages. | |
| Note that in binary classification, recall of the positive class is also known as “sensitivity”; recall of the negative class is “specificity”. | |
| Examples: | |
| Simple example | |
| >>> accuracy_metric = evaluate.load("bstrai/classification_report") | |
| >>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0]) | |
| >>> print(results) | |
| {'0': {'precision': 0.5, 'recall': 0.5, 'f1-score': 0.5, 'support': 2}, '1': {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}, '2': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2}, 'accuracy': 0.5, 'macro avg': {'precision': 0.38888888888888884, 'recall': 0.5, 'f1-score': 0.43333333333333335, 'support': 6}, 'weighted avg': {'precision': 0.38888888888888884, 'recall': 0.5, 'f1-score': 0.43333333333333335, 'support': 6}} | |
| """ | |
| _CITATION = """ | |
| @article{scikit-learn, | |
| title={Scikit-learn: Machine Learning in {P}ython}, | |
| author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. | |
| and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. | |
| and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and | |
| Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, | |
| journal={Journal of Machine Learning Research}, | |
| volume={12}, | |
| pages={2825--2830}, | |
| year={2011} | |
| } | |
| """ | |
| class ClassificationReportModule(evaluate.Metric): | |
| def _info(self) -> evaluate.MetricInfo: | |
| return evaluate.MetricInfo( | |
| description=_DESCRIPTION, | |
| citation=_CITATION, | |
| inputs_description=_KWARGS_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "predictions": datasets.Sequence(datasets.Value("int32")), | |
| "references": datasets.Sequence(datasets.Value("int32")), | |
| } | |
| if self.config_name == "multilabel" | |
| else { | |
| "predictions": datasets.Value("int32"), | |
| "references": datasets.Value("int32"), | |
| } | |
| ), | |
| reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html"], | |
| ) | |
| def _compute(self, predictions, references, labels=None, target_names=None, sample_weight=None, digits=2, zero_division="warn") -> dict: | |
| return classification_report(y_true=references, y_pred=predictions, labels=labels, target_names=target_names, sample_weight=sample_weight, digits=digits, output_dict=True, zero_division=zero_division) | |