File size: 554 Bytes
94f2e22
a7d3ccb
94f2e22
c9c9606
 
 
 
 
a7d3ccb
 
 
 
 
 
 
43f51cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import streamlit as st
from sklearn import neighbors, datasets

with st.form(key='my_form'):
  sLen = st.slider('Sepal lenght (cm.)', 0.0, 10.0)
  sWid = st.slider('Sepal width (cm.)', 0.0, 10.0)
  pLen = st.slider('Petal lenght (cm.)', 0.0, 10.0)
  pWid = st.slider('Pepal width (cm.)', 0.0, 10.0)
  st.form_submit_button('Predict')
  
iris = datasets.load_iris()
X,y = iris.data, iris.target
knn = neighbors.KNeighborsClassifier(n_neighbors=2) #k = 3,4,5,6
knn.fit(X,y)
predict = knn.predict([[sLen,sWid,pLen,pWid]])
st.text(iris.target_names[predict])