Spaces:
Build error
Build error
| # βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ> | |
| # Comment: various test-blocks to prevent session-outage with more recent UI; | |
| # chainlit==1.1.404 | |
| # new imports: user_session, init_ws_context, chainlit.session/ WebsocketSession | |
| # ref--'Session is disconnected' rt7E1rI_uhficQm8AAAA .. | |
| # <βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
| import os | |
| import re | |
| import uuid | |
| import json | |
| import asyncio | |
| import requests | |
| from pathlib import Path | |
| from datetime import datetime | |
| from dotenv import load_dotenv | |
| import chainlit as cl | |
| from concurrent.futures import ThreadPoolExecutor | |
| from chainlit import user_session | |
| from chainlit.session import WebsocketSession | |
| from langchain_openai import OpenAI | |
| from langchain.chains import LLMChain | |
| from langchain_core.prompts import PromptTemplate | |
| from langchain.memory.buffer import ConversationBufferMemory | |
| from langchain_core.runnables.history import RunnableWithMessageHistory | |
| from langchain_core.chat_history import BaseChatMessageHistory | |
| from langchain_core.messages import BaseMessage | |
| from typing import List | |
| from pydantic import BaseModel, Field | |
| # -------------------------------=== class action ===------------------------------ | |
| class InMemoryHistory(BaseChatMessageHistory, BaseModel): | |
| messages: List[BaseMessage] = Field(default_factory=list) | |
| def add_messages(self, messages: List[BaseMessage]) -> None: | |
| self.messages.extend(messages) | |
| def clear(self) -> None: | |
| self.messages = [] | |
| chat_histories = {} | |
| def get_session_history(session_id: str) -> BaseChatMessageHistory: | |
| if session_id not in chat_histories: | |
| chat_histories[session_id] = InMemoryHistory() | |
| return chat_histories[session_id] | |
| # -------------------------------=== environment ===------------------------------ | |
| load_dotenv() | |
| OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
| auth_token = os.getenv("DAYSOFF_API_TOKEN") | |
| API_URL = "https://aivisions.no/data/daysoff/api/v1/booking/" | |
| # ----------------------------=== system-instruct ===------------------------------ | |
| daysoff_assistant_template = """ | |
| You are a customer support assistant for Daysoff ('Daysoff Kundeservice AI Support') who helps users retrieve booking information based on their bookingnummer. | |
| You should concisely use the term βbookingnummerβ. Maintain a friendly and professional tone, **reflecting the warmth of a female customer support | |
| representative archetype.** By default, you answer in **Norwegian**. | |
| ============================ | |
| Chat History: {chat_history} | |
| Question: {question} | |
| ============================ | |
| Answer: | |
| """ | |
| daysoff_assistant_prompt = PromptTemplate( | |
| input_variables=["chat_history", "question"], | |
| template=daysoff_assistant_template, | |
| ) | |
| # --------------------------------=== API Call ===--------------------------------- | |
| async def async_post_request(url, headers, data): | |
| return await asyncio.to_thread(requests.post, url, headers=headers, json=data) | |
| # ----------------------------=== @cl.set_starters ===------------------------------ | |
| async def set_starters(): | |
| return [ | |
| cl.Starter( | |
| label="Booking ID request", | |
| message="Kan du gi meg info om en reservasjon?", | |
| icon="/public/booking_id.svg", | |
| ), | |
| cl.Starter( | |
| label="Metric Space Self-Identity Framework", | |
| message="Explain the Metric Space Self-Identity Framework like I'm six years old.", | |
| icon="/public/learn.svg", | |
| ), | |
| cl.Starter( | |
| label="Python script for daily email reports", | |
| message="Write a script to automate sending daily email reports in Python, and walk me through how I would set it up.", | |
| icon="/public/terminal.svg", | |
| ), | |
| cl.Starter( | |
| label="Morning routine ideation", | |
| message="Can you help me create a personalized Yoga/pranayama/meditation morning routine that would help increase my productivity throughout the day? Start by asking me about my current habits and what activities energize me in the morning.", | |
| icon="/public/idea.svg", | |
| ) | |
| ] | |
| # ----------------------------=== @cl.on_chat_start ===------------------------------ | |
| async def setup(): | |
| try: | |
| cl.user_session.set("socket_auth", True) | |
| cl.user_session.set("max_retries", 3) | |
| cl.user_session.set("connection_attempts", 0) | |
| llm = OpenAI( | |
| model="gpt-3.5-turbo-instruct", | |
| temperature=0.7, | |
| openai_api_key=OPENAI_API_KEY, | |
| max_tokens=2048, | |
| top_p=0.9, | |
| frequency_penalty=0.1, | |
| presence_penalty=0.1, | |
| ) | |
| conversation_memory = ConversationBufferMemory( | |
| memory_key="chat_history", | |
| max_len=30, | |
| return_messages=True | |
| ) | |
| llm_chain = LLMChain( | |
| llm=llm, | |
| prompt=daysoff_assistant_prompt, | |
| memory=conversation_memory, | |
| ) | |
| cl.user_session.set("llm_chain", llm_chain) | |
| except Exception as e: | |
| await cl.Message(content=f"Errorisme in init chat session: {str(e)}").send() | |
| # ----------------------------=== long_running_task ===------------------------------ | |
| async def long_running_task(message_content: str): | |
| loop = asyncio.get_running_loop() | |
| with ThreadPoolExecutor() as pool: | |
| llm_chain = cl.user_session.get("llm_chain") | |
| if llm_chain: | |
| return await loop.run_in_executor( | |
| pool, | |
| lambda: llm_chain.invoke({ | |
| "question": message_content, | |
| "chat_history": "" | |
| }) | |
| ) | |
| else: | |
| return {"text": "Errorism: LLM Chain is not init."} | |
| # ----------------------------=== @cl.on_message ===------------------------------ | |
| async def handle_message(message: cl.Message): | |
| user_message = message.content | |
| llm_chain = cl.user_session.get("llm_chain") | |
| if not llm_chain: | |
| await cl.Message(content="Errorism: Chat session not properly init. Consider a restart.").send() | |
| return | |
| booking_pattern = r'\b[A-Z]{6}\d{6}\b' | |
| match = re.search(booking_pattern, user_message) | |
| if match: | |
| bestillingskode = match.group() | |
| headers = { | |
| "Authorization": auth_token, | |
| "Content-Type": "application/json" | |
| } | |
| payload = {"booking_id": bestillingskode} | |
| try: | |
| response = await async_post_request(API_URL, headers, payload) | |
| response.raise_for_status() | |
| booking_data = response.json() | |
| #if "order_number" in booking_data.get("data", {}): | |
| if "booking_id" in booking_data: | |
| try: | |
| data = booking_data["data"] | |
| table = ( | |
| "| πππππ | ππ»π³πΌ |\n" | |
| "|:-----------|:---------------------|\n" | |
| f"| π±ππππππππππππππ | {booking_data.get('booking_id', 'N/A')} |\n" | |
| f"| ππͺπ‘π‘ πππ’π | {booking_data.get('full_name', 'N/A')} |\n" | |
| f"| πΌπ’π€πͺπ£π© | {booking_data.get('amount', 0)} kr |\n" | |
| f"| πΎππππ -ππ£ | {booking_data.get('checkin', 'N/A')} |\n" | |
| f"| πΎππππ -π€πͺπ© | {booking_data.get('checkout', 'N/A')} |\n" | |
| f"| πΌπππ§ππ¨π¨ | {booking_data.get('address', 'N/A')} |\n" | |
| f"| ππ¨ππ§ ππΏ | {booking_data.get('user_id', 0)} |\n" | |
| f"| ππ£ππ€ ππππ© | {booking_data.get('infotext', 'N/A')} |\n" | |
| f"| ππ£ππ‘πͺπππ | {booking_data.get('included', 'N/A')} |" | |
| ) | |
| combined_message = f"### Her er informasjon for {bestillingskode}:\n\n{table}" | |
| await cl.Message(content=combined_message).send() | |
| except Exception as e: | |
| await cl.Message(content=f"En uventet feil oppsto: {str(e)}").send() | |
| else: | |
| await cl.Message(content="Ingen bookinginformasjon funnet.").send() | |
| except requests.exceptions.RequestException as e: | |
| await cl.Message(content=f"API tilkoblingen ble ikke utfΓΈrt: {str(e)}").send() | |
| else: | |
| try: | |
| response = await long_running_task(message.content) | |
| await cl.Message(content=response["text"]).send() | |
| except Exception as e: | |
| await cl.Message(content=f"Errorism!: {str(e)}").send() | |