File size: 3,324 Bytes
22ac777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425ba26
22ac777
 
356294b
22ac777
 
 
 
356294b
22ac777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356294b
22ac777
 
 
 
 
 
 
356294b
1017ac0
e9125ed
1017ac0
356294b
22ac777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""
"""

from typing import Any
from typing import Callable
from typing import ParamSpec

import spaces
import torch
from torch.utils._pytree import tree_map_only
from torchao.quantization import quantize_
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig

from optimization_utils import capture_component_call
from optimization_utils import aoti_compile


P = ParamSpec('P')


TRANSFORMER_NUM_FRAMES_DIM = torch.export.Dim('num_frames', min=3, max=21)

TRANSFORMER_DYNAMIC_SHAPES = {
    'hidden_states': {
        2: TRANSFORMER_NUM_FRAMES_DIM,
    },
}

INDUCTOR_CONFIGS = {
    'conv_1x1_as_mm': True,
    'epilogue_fusion': False,
    'coordinate_descent_tuning': True,
    'coordinate_descent_check_all_directions': True,
    'max_autotune': True,
    'triton.cudagraphs': True,
}


def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):

    @spaces.GPU(duration=1500)
    def compile_transformer():

        with capture_component_call(pipeline, 'transformer') as call:
            pipeline(*args, **kwargs)
        
        dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
        dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES

        quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
        
        hidden_states: torch.Tensor = call.kwargs['hidden_states']
        hidden_states_transposed = hidden_states.transpose(-1, -2).contiguous()
        if hidden_states.shape[-1] > hidden_states.shape[-2]:
            hidden_states_landscape = hidden_states
            hidden_states_portrait = hidden_states_transposed
        else:
            hidden_states_landscape = hidden_states_transposed
            hidden_states_portrait = hidden_states

        exported_landscape = torch.export.export(
            mod=pipeline.transformer,
            args=call.args,
            kwargs=call.kwargs | {'hidden_states': hidden_states_landscape},
            dynamic_shapes=dynamic_shapes,
        )
        
        exported_portrait = torch.export.export(
            mod=pipeline.transformer,
            args=call.args,
            kwargs=call.kwargs | {'hidden_states': hidden_states_portrait},
            dynamic_shapes=dynamic_shapes,
        )

        compiled_landscape = aoti_compile(exported_landscape, INDUCTOR_CONFIGS)
        compiled_portrait = aoti_compile(exported_portrait, INDUCTOR_CONFIGS)
        compiled_portrait.weights = compiled_landscape.weights # Avoid weights duplication when serializing back to main process

        return compiled_landscape, compiled_portrait

    compiled_landscape, compiled_portrait = compile_transformer()

    def combined_transformer(*args, **kwargs):
        hidden_states: torch.Tensor = kwargs['hidden_states']
        if hidden_states.shape[-1] > hidden_states.shape[-2]:
            return compiled_landscape(*args, **kwargs)
        else:
            return compiled_portrait(*args, **kwargs)

    transformer_config = pipeline.transformer.config
    transformer_dtype = pipeline.transformer.dtype
    pipeline.transformer = combined_transformer
    pipeline.transformer.config = transformer_config # pyright: ignore[reportAttributeAccessIssue]
    pipeline.transformer.dtype = transformer_dtype # pyright: ignore[reportAttributeAccessIssue]