wan2-1-fast / optimization_utils.py
cbensimon's picture
cbensimon HF Staff
Make ZeroGPUCompiledModel actually serializable
7e1b70d
"""
"""
import contextlib
from contextvars import ContextVar
from io import BytesIO
from typing import Any
from typing import cast
from unittest.mock import patch
import torch
from torch._inductor.package.package import package_aoti
from torch.export.pt2_archive._package import AOTICompiledModel
from torch.export.pt2_archive._package_weights import Weights
INDUCTOR_CONFIGS_OVERRIDES = {
'aot_inductor.package_constants_in_so': False,
'aot_inductor.package_constants_on_disk': True,
'aot_inductor.package': True,
}
class ZeroGPUWeights:
def __init__(self, constants_map: dict[str, torch.Tensor], to_cuda: bool = False):
if to_cuda:
self.constants_map = {name: tensor.to('cuda') for name, tensor in constants_map.items()}
else:
self.constants_map = constants_map
def __reduce__(self):
constants_map: dict[str, torch.Tensor] = {}
for name, tensor in self.constants_map.items():
tensor_ = torch.empty_like(tensor, device='cpu').pin_memory()
constants_map[name] = tensor_.copy_(tensor).detach().share_memory_()
return ZeroGPUWeights, (constants_map, True)
class ZeroGPUCompiledModel:
def __init__(self, archive_file: torch.types.FileLike, weights: ZeroGPUWeights):
self.archive_file = archive_file
self.weights = weights
self.compiled_model: ContextVar[AOTICompiledModel | None] = ContextVar('compiled_model', default=None)
def __call__(self, *args, **kwargs):
if (compiled_model := self.compiled_model.get()) is None:
compiled_model = cast(AOTICompiledModel, torch._inductor.aoti_load_package(self.archive_file))
compiled_model.load_constants(self.weights.constants_map, check_full_update=True, user_managed=True)
self.compiled_model.set(compiled_model)
return compiled_model(*args, **kwargs)
def __reduce__(self):
return ZeroGPUCompiledModel, (self.archive_file, self.weights)
def aoti_compile(
exported_program: torch.export.ExportedProgram,
inductor_configs: dict[str, Any] | None = None,
):
inductor_configs = (inductor_configs or {}) | INDUCTOR_CONFIGS_OVERRIDES
gm = cast(torch.fx.GraphModule, exported_program.module())
assert exported_program.example_inputs is not None
args, kwargs = exported_program.example_inputs
artifacts = torch._inductor.aot_compile(gm, args, kwargs, options=inductor_configs)
archive_file = BytesIO()
files: list[str | Weights] = [file for file in artifacts if isinstance(file, str)]
package_aoti(archive_file, files)
weights, = (artifact for artifact in artifacts if isinstance(artifact, Weights))
zerogpu_weights = ZeroGPUWeights({name: weights.get_weight(name)[0] for name in weights})
return ZeroGPUCompiledModel(archive_file, zerogpu_weights)
@contextlib.contextmanager
def capture_component_call(
pipeline: Any,
component_name: str,
component_method='forward',
):
class CapturedCallException(Exception):
def __init__(self, *args, **kwargs):
super().__init__()
self.args = args
self.kwargs = kwargs
class CapturedCall:
def __init__(self):
self.args: tuple[Any, ...] = ()
self.kwargs: dict[str, Any] = {}
component = getattr(pipeline, component_name)
captured_call = CapturedCall()
def capture_call(*args, **kwargs):
raise CapturedCallException(*args, **kwargs)
with patch.object(component, component_method, new=capture_call):
try:
yield captured_call
except CapturedCallException as e:
captured_call.args = e.args
captured_call.kwargs = e.kwargs