File size: 11,076 Bytes
9346f1c
4103566
9346f1c
4596a70
8b1f7a0
57edaa4
0cbc3d8
fa0f3d4
8be0caa
01ea22b
b98f07f
 
 
 
 
 
 
54eae7e
3b3db42
 
0b78364
9592714
3b3db42
cba6080
fa0f3d4
3b3db42
 
 
c4a1d6e
fa0f3d4
3b3db42
 
3d8dbe8
 
3b3db42
bbd72ab
3b3db42
 
95f7c57
b98f07f
2a73469
10f9b3c
30dede7
fabb601
4103566
fabb601
 
 
08ba1fc
fabb601
 
 
 
 
 
08ba1fc
fabb601
 
f91314f
fabb601
1b8a36b
a885f09
95f7c57
2a73469
cba6080
 
95f7c57
cba6080
9592714
 
 
 
cba6080
ffefe11
 
 
 
818f024
614ee1f
57edaa4
0cbc3d8
 
19cd8f0
8be0caa
 
 
 
 
 
6b71c04
129a743
9b50e17
8be0caa
 
0cbc3d8
52176d8
 
7647d44
36b6f3b
0cbc3d8
 
 
57edaa4
 
a7b8322
57edaa4
 
646e06c
4f7437c
57edaa4
 
 
 
 
 
afa58ef
33a345a
afa58ef
57edaa4
 
 
 
 
 
 
 
 
 
 
 
 
c4a1d6e
4103566
 
 
 
c4a1d6e
4103566
c4a1d6e
 
4103566
 
c4a1d6e
 
4103566
c4a1d6e
 
87e25d9
 
 
 
 
 
 
4103566
c4a1d6e
4103566
 
 
 
 
beaaa9e
f6475aa
01233b7
 
58733e4
d4ccaf3
10f9b3c
8daa060
65af9f4
c4a1d6e
 
2d95777
c4a1d6e
fa0f3d4
 
 
7e8ac0e
fa0f3d4
39c179a
57edaa4
ef68dba
 
 
 
 
 
c40ac63
cb05dea
d4ccaf3
e7226cc
cb05dea
21ce100
e7226cc
21ce100
d4ccaf3
21ce100
b98f07f
 
 
 
21ce100
 
 
 
 
16a06c4
21ce100
b98f07f
 
 
 
21ce100
 
 
 
 
16a06c4
21ce100
 
b98f07f
 
 
 
21ce100
 
 
 
 
16a06c4
21ce100
c6f7010
 
e7226cc
d4ccaf3
 
 
e5ec0e1
072fab0
3d8dbe8
b98f07f
072fab0
67f7e37
072fab0
 
e7226cc
d4ccaf3
7a7f4b5
3d8dbe8
b98f07f
7a7f4b5
bbd72ab
fccd458
 
7a7f4b5
3d8dbe8
b98f07f
7a7f4b5
 
 
d4ccaf3
b98f07f
8daa060
d4ccaf3
 
 
 
 
 
 
 
7a7f4b5
 
b98f07f
d4ccaf3
 
8daa060
 
f7d1b51
 
 
 
 
71f25ab
f7d1b51
818f024
 
f7d1b51
10f9b3c
511c060
10f9b3c
c438de2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import plotly.graph_objects as go
import plotly.express as px
from src.about import Tasks, AssetTasks, UncertaintyTasks

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    ASSET_BENCHMARK_COLS,
    UNCERTAINTY_BENCHMARK_COLS,
    COLS,
    ASSET_COLS,
    UNCERTAINTY_COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    AutoEvalColumnAsset,
    AutoEvalColumnUncertainty,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.about import Tasks, AssetTasks


def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    print('error')
    restart_space()


LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS, Tasks)

print(ASSET_COLS)

ASSET_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ASSET_COLS, ASSET_BENCHMARK_COLS, AssetTasks)

UNCERTAINTY_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, UNCERTAINTY_COLS, UNCERTAINTY_BENCHMARK_COLS, UncertaintyTasks)
missing_uncertainties = (UNCERTAINTY_LEADERBOARD_DF[UNCERTAINTY_BENCHMARK_COLS] == 0).all(axis=1)
UNCERTAINTY_LEADERBOARD_DF = UNCERTAINTY_LEADERBOARD_DF[~missing_uncertainties]
UNCERTAINTY_LEADERBOARD_DF = UNCERTAINTY_LEADERBOARD_DF.loc[:,~UNCERTAINTY_LEADERBOARD_DF.columns.duplicated()]

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


def init_asset_plot(df):
    acc_col = 'Average ⬆️'
    df = df.sort_values(acc_col).tail(3)
    fig = go.Figure()
    asset_tasks = [task.value.col_name for task in AssetTasks]
    for _, row in df.iterrows():
        fig.add_trace(go.Scatterpolar(
            r=[row[asset_task] for asset_task in asset_tasks],
            theta=asset_tasks,
            opacity = 0.5,
            fill='toself',
            name=row['Model'],
        )
    )
    fig.update_layout(
        autosize=False,
        width=1000,
        height=700,
        title=f"Top 3 accuracies breakdown"
    )
    return fig

def init_perf_plot(df):
    df = df.copy()
    params_col = '#Params (B)'
    df["symbol"] = 2  # Triangle
    df["color"] = ""
    df.loc[df["Model"].str.contains("granite"), "color"] = "grey"
    acc_col = 'Average ⬆️'
    fig = go.Figure()
    for i in df.index:
        fig.add_trace(
            go.Scatter(
                x=[df.loc[i, params_col]],
                y=[df.loc[i, acc_col]],
                name=df.loc[i, "Model"],
                # hovertemplate="<b>%{text}</b><br><br>",
                text=[df.loc[i, "Model"]]
            )
        )

    fig.update_layout(
        autosize=False,
        width=650,
        height=600,
        title=f"Model Size Vs Accuracy",
        xaxis_title=f"{params_col}",
        yaxis_title="Accuracy",
    )
    return fig

def init_leaderboard(dataframe, auto_eval_col_class):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(auto_eval_col_class)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(auto_eval_col_class) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(auto_eval_col_class) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[auto_eval_col_class.model.name, auto_eval_col_class.license.name],
        hide_columns=[c.name for c in fields(auto_eval_col_class) if c.hidden],
        filter_columns=[
            ColumnFilter(auto_eval_col_class.model_type.name, type="checkboxgroup", label="Model types"),
            ColumnFilter(auto_eval_col_class.precision.name, type="checkboxgroup", label="Precision"),
            ColumnFilter(
                auto_eval_col_class.params.name,
                type="slider",
                min=0.01,
                max=800,
                label="Select the number of parameters (B)",
            ),
            ColumnFilter(
                auto_eval_col_class.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=False
            ),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF, AutoEvalColumn)
        
        with gr.TabItem("πŸ› οΈ Asset Benchmark", elem_id="llm-benchmark-asset-tab-table", id=1):
            leaderboard = init_leaderboard(ASSET_LEADERBOARD_DF, AutoEvalColumnAsset)
        
        with gr.TabItem("πŸ˜΅β€πŸ’« Uncertainty Benchmark", elem_id="llm-benchmark-asset-tab-table", id=2):
            leaderboard = init_leaderboard(UNCERTAINTY_LEADERBOARD_DF, AutoEvalColumnUncertainty)

        with gr.TabItem("πŸ“Š Performance Plot", elem_id="llm-benchmark-tab-table", id=3):
            print(LEADERBOARD_DF.columns)
            # gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
            perf_plot = gr.components.Plot(
                # value=init_perf_plot(LEADERBOARD_DF),
                value=init_asset_plot(ASSET_LEADERBOARD_DF),
                elem_id="bs1-plot",
                show_label=False,
            )

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=4):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("πŸš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=5):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()