Spaces:
Running
Running
File size: 11,076 Bytes
9346f1c 4103566 9346f1c 4596a70 8b1f7a0 57edaa4 0cbc3d8 fa0f3d4 8be0caa 01ea22b b98f07f 54eae7e 3b3db42 0b78364 9592714 3b3db42 cba6080 fa0f3d4 3b3db42 c4a1d6e fa0f3d4 3b3db42 3d8dbe8 3b3db42 bbd72ab 3b3db42 95f7c57 b98f07f 2a73469 10f9b3c 30dede7 fabb601 4103566 fabb601 08ba1fc fabb601 08ba1fc fabb601 f91314f fabb601 1b8a36b a885f09 95f7c57 2a73469 cba6080 95f7c57 cba6080 9592714 cba6080 ffefe11 818f024 614ee1f 57edaa4 0cbc3d8 19cd8f0 8be0caa 6b71c04 129a743 9b50e17 8be0caa 0cbc3d8 52176d8 7647d44 36b6f3b 0cbc3d8 57edaa4 a7b8322 57edaa4 646e06c 4f7437c 57edaa4 afa58ef 33a345a afa58ef 57edaa4 c4a1d6e 4103566 c4a1d6e 4103566 c4a1d6e 4103566 c4a1d6e 4103566 c4a1d6e 87e25d9 4103566 c4a1d6e 4103566 beaaa9e f6475aa 01233b7 58733e4 d4ccaf3 10f9b3c 8daa060 65af9f4 c4a1d6e 2d95777 c4a1d6e fa0f3d4 7e8ac0e fa0f3d4 39c179a 57edaa4 ef68dba c40ac63 cb05dea d4ccaf3 e7226cc cb05dea 21ce100 e7226cc 21ce100 d4ccaf3 21ce100 b98f07f 21ce100 16a06c4 21ce100 b98f07f 21ce100 16a06c4 21ce100 b98f07f 21ce100 16a06c4 21ce100 c6f7010 e7226cc d4ccaf3 e5ec0e1 072fab0 3d8dbe8 b98f07f 072fab0 67f7e37 072fab0 e7226cc d4ccaf3 7a7f4b5 3d8dbe8 b98f07f 7a7f4b5 bbd72ab fccd458 7a7f4b5 3d8dbe8 b98f07f 7a7f4b5 d4ccaf3 b98f07f 8daa060 d4ccaf3 7a7f4b5 b98f07f d4ccaf3 8daa060 f7d1b51 71f25ab f7d1b51 818f024 f7d1b51 10f9b3c 511c060 10f9b3c c438de2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import plotly.graph_objects as go
import plotly.express as px
from src.about import Tasks, AssetTasks, UncertaintyTasks
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
ASSET_BENCHMARK_COLS,
UNCERTAINTY_BENCHMARK_COLS,
COLS,
ASSET_COLS,
UNCERTAINTY_COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
AutoEvalColumnAsset,
AutoEvalColumnUncertainty,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.about import Tasks, AssetTasks
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
print('error')
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS, Tasks)
print(ASSET_COLS)
ASSET_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, ASSET_COLS, ASSET_BENCHMARK_COLS, AssetTasks)
UNCERTAINTY_LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, UNCERTAINTY_COLS, UNCERTAINTY_BENCHMARK_COLS, UncertaintyTasks)
missing_uncertainties = (UNCERTAINTY_LEADERBOARD_DF[UNCERTAINTY_BENCHMARK_COLS] == 0).all(axis=1)
UNCERTAINTY_LEADERBOARD_DF = UNCERTAINTY_LEADERBOARD_DF[~missing_uncertainties]
UNCERTAINTY_LEADERBOARD_DF = UNCERTAINTY_LEADERBOARD_DF.loc[:,~UNCERTAINTY_LEADERBOARD_DF.columns.duplicated()]
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_asset_plot(df):
acc_col = 'Average β¬οΈ'
df = df.sort_values(acc_col).tail(3)
fig = go.Figure()
asset_tasks = [task.value.col_name for task in AssetTasks]
for _, row in df.iterrows():
fig.add_trace(go.Scatterpolar(
r=[row[asset_task] for asset_task in asset_tasks],
theta=asset_tasks,
opacity = 0.5,
fill='toself',
name=row['Model'],
)
)
fig.update_layout(
autosize=False,
width=1000,
height=700,
title=f"Top 3 accuracies breakdown"
)
return fig
def init_perf_plot(df):
df = df.copy()
params_col = '#Params (B)'
df["symbol"] = 2 # Triangle
df["color"] = ""
df.loc[df["Model"].str.contains("granite"), "color"] = "grey"
acc_col = 'Average β¬οΈ'
fig = go.Figure()
for i in df.index:
fig.add_trace(
go.Scatter(
x=[df.loc[i, params_col]],
y=[df.loc[i, acc_col]],
name=df.loc[i, "Model"],
# hovertemplate="<b>%{text}</b><br><br>",
text=[df.loc[i, "Model"]]
)
)
fig.update_layout(
autosize=False,
width=650,
height=600,
title=f"Model Size Vs Accuracy",
xaxis_title=f"{params_col}",
yaxis_title="Accuracy",
)
return fig
def init_leaderboard(dataframe, auto_eval_col_class):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(auto_eval_col_class)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(auto_eval_col_class) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(auto_eval_col_class) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[auto_eval_col_class.model.name, auto_eval_col_class.license.name],
hide_columns=[c.name for c in fields(auto_eval_col_class) if c.hidden],
filter_columns=[
ColumnFilter(auto_eval_col_class.model_type.name, type="checkboxgroup", label="Model types"),
ColumnFilter(auto_eval_col_class.precision.name, type="checkboxgroup", label="Precision"),
ColumnFilter(
auto_eval_col_class.params.name,
type="slider",
min=0.01,
max=800,
label="Select the number of parameters (B)",
),
ColumnFilter(
auto_eval_col_class.still_on_hub.name, type="boolean", label="Deleted/incomplete", default=False
),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF, AutoEvalColumn)
with gr.TabItem("π οΈ Asset Benchmark", elem_id="llm-benchmark-asset-tab-table", id=1):
leaderboard = init_leaderboard(ASSET_LEADERBOARD_DF, AutoEvalColumnAsset)
with gr.TabItem("π΅βπ« Uncertainty Benchmark", elem_id="llm-benchmark-asset-tab-table", id=2):
leaderboard = init_leaderboard(UNCERTAINTY_LEADERBOARD_DF, AutoEvalColumnUncertainty)
with gr.TabItem("π Performance Plot", elem_id="llm-benchmark-tab-table", id=3):
print(LEADERBOARD_DF.columns)
# gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
perf_plot = gr.components.Plot(
# value=init_perf_plot(LEADERBOARD_DF),
value=init_asset_plot(ASSET_LEADERBOARD_DF),
elem_id="bs1-plot",
show_label=False,
)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=4):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=5):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |