File size: 5,442 Bytes
3d8dbe8
8b1f7a0
 
3b3db42
 
fa0f3d4
29546b4
3d8dbe8
 
 
91e8a06
8b1f7a0
 
 
 
 
 
 
 
 
 
 
29546b4
cba6080
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d8dbe8
 
8b1f7a0
cba6080
 
 
 
fa0f3d4
 
 
9592714
29546b4
8b1f7a0
 
 
 
 
 
 
 
 
29546b4
8b1f7a0
3d8dbe8
8b1f7a0
2a860f6
 
8b1f7a0
 
 
3d8dbe8
 
 
 
 
8b1f7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d8dbe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b1f7a0
 
 
cba6080
fa0f3d4
 
8b1f7a0
 
 
 
ceb2102
afc4da4
9592714
8b1f7a0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from dataclasses import dataclass, make_dataclass
from enum import Enum

import pandas as pd

from src.about import Tasks, AssetTasks, UncertaintyTasks

def fields(raw_class):
    return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]


# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
    name: str
    type: str
    displayed_by_default: bool
    hidden: bool = False
    never_hidden: bool = False

## Leaderboard columns
def get_auto_eval_column_dict(task_class):
    auto_eval_column_dict = []
    # Init
    auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
    auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
    #Scores
    auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
    for task in task_class:
        auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
    # Model information
    auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
    auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
    auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
    auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
    auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
    auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
    auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
    auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
    auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
    return auto_eval_column_dict

auto_eval_column_dict = get_auto_eval_column_dict(Tasks)
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)

auto_eval_column_asset_dict = get_auto_eval_column_dict(AssetTasks)
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumnAsset = make_dataclass("AutoEvalColumnAsset", auto_eval_column_asset_dict, frozen=True)

auto_eval_column_uncertainty_dict = get_auto_eval_column_dict(UncertaintyTasks)
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumnUncertainty = make_dataclass("AutoEvalColumnUncertainty", auto_eval_column_uncertainty_dict, frozen=True)
AutoEvalColumnUncertainty.average.name = 'fmsr_uacc'
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn:  # Queue column
    model = ColumnContent("model", "markdown", True)
    revision = ColumnContent("revision", "str", True)
    private = ColumnContent("private", "bool", True)
    precision = ColumnContent("precision", "str", True)
    weight_type = ColumnContent("weight_type", "str", "Original")
    status = ColumnContent("status", "str", True)

## All the model information that we might need
@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = "" # emoji


class ModelType(Enum):
    PT = ModelDetails(name="pretrained", symbol="🟢")
    FT = ModelDetails(name="fine-tuned", symbol="🔶")
    IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
    RL = ModelDetails(name="RL-tuned", symbol="🟦")
    Unknown = ModelDetails(name="", symbol="?")

    def to_str(self, separator=" "):
        return f"{self.value.symbol}{separator}{self.value.name}"

    @staticmethod
    def from_str(type):
        if "fine-tuned" in type or "🔶" in type:
            return ModelType.FT
        if "pretrained" in type or "🟢" in type:
            return ModelType.PT
        if "RL-tuned" in type or "🟦" in type:
            return ModelType.RL
        if "instruction-tuned" in type or "⭕" in type:
            return ModelType.IFT
        return ModelType.Unknown

class WeightType(Enum):
    Adapter = ModelDetails("Adapter")
    Original = ModelDetails("Original")
    Delta = ModelDetails("Delta")

class Precision(Enum):
    float16 = ModelDetails("float16")
    bfloat16 = ModelDetails("bfloat16")
    Unknown = ModelDetails("?")

    def from_str(precision):
        if precision in ["torch.float16", "float16"]:
            return Precision.float16
        if precision in ["torch.bfloat16", "bfloat16"]:
            return Precision.bfloat16
        return Precision.Unknown

# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
ASSET_COLS = [c.name for c in fields(AutoEvalColumnAsset) if not c.hidden]
UNCERTAINTY_COLS = [c.name for c in fields(AutoEvalColumnUncertainty) if not c.hidden]


EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]

BENCHMARK_COLS = [t.value.col_name for t in Tasks]
ASSET_BENCHMARK_COLS = [t.value.col_name for t in AssetTasks]
UNCERTAINTY_BENCHMARK_COLS = [t.value.col_name for t in UncertaintyTasks]