Update app.py
Browse files
app.py
CHANGED
|
@@ -1,186 +1,179 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from model import models
|
| 3 |
-
from multit2i import (load_models, infer_fn, infer_rand_fn, save_gallery,
|
| 4 |
-
change_model, warm_model, get_model_info_md, loaded_models, warm_models,
|
| 5 |
-
get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
|
| 6 |
-
get_recom_prompt_type, set_recom_prompt_preset, get_tag_type, randomize_seed, translate_to_en)
|
| 7 |
-
from tagger.tagger import (predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
|
| 8 |
-
insert_recom_prompt, compose_prompt_to_copy)
|
| 9 |
-
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
|
| 10 |
-
from tagger.v2 import V2_ALL_MODELS, v2_random_prompt
|
| 11 |
-
from tagger.utils import (V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS,
|
| 12 |
-
V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
|
| 13 |
-
|
| 14 |
-
max_images = 6
|
| 15 |
-
MAX_SEED = 2**32-1
|
| 16 |
-
load_models(models)
|
| 17 |
-
warm_models(models[0:max_images])
|
| 18 |
-
|
| 19 |
-
css = """
|
| 20 |
-
.title { font-size: 3em; align-items: center; text-align: center; }
|
| 21 |
-
.info { align-items: center; text-align: center; }
|
| 22 |
-
.model_info { text-align: center; }
|
| 23 |
-
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
|
| 24 |
-
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
|
| 25 |
-
"""
|
| 26 |
-
|
| 27 |
-
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
| 28 |
-
with gr.Tab("Image Generator"):
|
| 29 |
-
with gr.Row():
|
| 30 |
-
with gr.Column(scale=10):
|
| 31 |
-
with gr.Group():
|
| 32 |
-
with gr.Accordion("Prompt from Image File", open=False):
|
| 33 |
-
tagger_image = gr.Image(label="Input image", type="pil", format="png", sources=["upload", "clipboard"], height=256)
|
| 34 |
-
with gr.Accordion(label="Advanced options", open=False):
|
| 35 |
-
with gr.Row(equal_height=True):
|
| 36 |
-
tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
|
| 37 |
-
tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
|
| 38 |
-
tagger_tag_type = gr.Radio(label="Convert tags to", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
|
| 39 |
-
with gr.Row(equal_height=True):
|
| 40 |
-
tagger_recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
|
| 41 |
-
tagger_keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
|
| 42 |
-
tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
|
| 43 |
-
tagger_generate_from_image = gr.Button(value="Generate Tags from Image", variant="secondary")
|
| 44 |
-
with gr.Accordion("Prompt Transformer", open=False):
|
| 45 |
-
with gr.Row(equal_height=True):
|
| 46 |
-
v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2)
|
| 47 |
-
v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2)
|
| 48 |
-
with gr.Row(equal_height=True):
|
| 49 |
-
v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
|
| 50 |
-
v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
|
| 51 |
-
v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
|
| 52 |
-
with gr.Row(equal_height=True):
|
| 53 |
-
v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
|
| 54 |
-
v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
|
| 55 |
-
v2_tag_type = gr.Radio(label="Tag Type", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru", visible=False)
|
| 56 |
-
v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
|
| 57 |
-
v2_copy = gr.Button(value="Copy to clipboard", variant="secondary", size="sm", interactive=False)
|
| 58 |
-
random_prompt = gr.Button(value="Extend 🎲", variant="secondary")
|
| 59 |
-
prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
|
| 60 |
-
with gr.Accordion("Advanced options", open=False):
|
| 61 |
-
neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
|
| 62 |
-
with gr.Row(equal_height=True):
|
| 63 |
-
width = gr.Slider(label="Width",
|
| 64 |
-
height = gr.Slider(label="Height",
|
| 65 |
-
steps = gr.Slider(label="Number of inference steps",
|
| 66 |
-
with gr.Row(equal_height=True):
|
| 67 |
-
cfg = gr.Slider(label="Guidance scale",
|
| 68 |
-
seed = gr.Slider(label="Seed",
|
| 69 |
-
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
|
| 70 |
-
recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
|
| 71 |
-
with gr.Row(equal_height=True):
|
| 72 |
-
positive_prefix = gr.CheckboxGroup(label="Use Positive Prefix", choices=get_positive_prefix(), value=[])
|
| 73 |
-
positive_suffix = gr.CheckboxGroup(label="Use Positive Suffix", choices=get_positive_suffix(), value=["Common"])
|
| 74 |
-
negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
|
| 75 |
-
negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
|
| 76 |
-
with gr.Row(equal_height=True):
|
| 77 |
-
image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=2)
|
| 78 |
-
trans_prompt = gr.Button(value="Translate 📝", variant="secondary", size="sm", scale=2)
|
| 79 |
-
clear_prompt = gr.Button(value="Clear 🗑️", variant="secondary", size="sm", scale=1)
|
| 80 |
-
|
| 81 |
-
with gr.Row(equal_height=True):
|
| 82 |
-
run_button = gr.Button("Generate Image", variant="primary", scale=6)
|
| 83 |
-
random_button = gr.Button("Random Model 🎲", variant="secondary", scale=3)
|
| 84 |
-
#stop_button = gr.Button('Stop', variant="stop", interactive=False, scale=1)
|
| 85 |
-
with gr.Group():
|
| 86 |
-
model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
|
| 87 |
-
model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]), elem_classes="model_info")
|
| 88 |
-
with gr.Column(scale=10):
|
| 89 |
-
with gr.Group():
|
| 90 |
-
with gr.Row():
|
| 91 |
-
output = [gr.Image(label='', elem_classes="output", type="filepath", format="png",
|
| 92 |
-
show_download_button=True, show_share_button=False, show_label=False,
|
| 93 |
-
interactive=False, min_width=80, visible=True, width=112, height=112) for _ in range(max_images)]
|
| 94 |
-
with gr.Group():
|
| 95 |
-
results = gr.Gallery(label="Gallery", elem_classes="gallery", interactive=False, show_download_button=True, show_share_button=False,
|
| 96 |
-
container=True, format="png", object_fit="cover", columns=2, rows=2)
|
| 97 |
-
image_files = gr.Files(label="Download", interactive=False)
|
| 98 |
-
clear_results = gr.Button("Clear Gallery / Download 🗑️", variant="secondary")
|
| 99 |
-
with gr.Column():
|
| 100 |
-
examples = gr.Examples(
|
| 101 |
-
examples = [
|
| 102 |
-
["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
|
| 103 |
-
["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
|
| 104 |
-
["kafuu chino, 1girl, solo"],
|
| 105 |
-
["1girl"],
|
| 106 |
-
["beautiful sunset"],
|
| 107 |
-
],
|
| 108 |
-
inputs=[prompt],
|
| 109 |
-
cache_examples=False,
|
| 110 |
-
)
|
| 111 |
-
with gr.Tab("PNG Info"):
|
| 112 |
-
def extract_exif_data(image):
|
| 113 |
-
if image is None: return ""
|
| 114 |
-
try:
|
| 115 |
-
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
|
| 116 |
-
for key in metadata_keys:
|
| 117 |
-
if key in image.info:
|
| 118 |
-
return image.info[key]
|
| 119 |
-
return str(image.info)
|
| 120 |
-
except Exception as e:
|
| 121 |
-
return f"Error extracting metadata: {str(e)}"
|
| 122 |
-
with gr.Row():
|
| 123 |
-
with gr.Column():
|
| 124 |
-
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
|
| 125 |
-
with gr.Column():
|
| 126 |
-
result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)
|
| 127 |
-
image_metadata.change(
|
| 128 |
-
fn=extract_exif_data,
|
| 129 |
-
inputs=[image_metadata],
|
| 130 |
-
outputs=[result_metadata],
|
| 131 |
-
)
|
| 132 |
-
gr.
|
| 133 |
-
|
| 134 |
-
[
|
| 135 |
-
[
|
| 136 |
-
[
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
.
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
).success(
|
| 173 |
-
|
| 174 |
-
).success(
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
).success(remove_specific_prompt, [prompt, tagger_keep_tags], [prompt], queue=False, show_api=False,
|
| 181 |
-
).success(convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
|
| 182 |
-
).success(insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
|
| 183 |
-
).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)
|
| 184 |
-
|
| 185 |
-
#demo.queue(default_concurrency_limit=200, max_size=200)
|
| 186 |
-
demo.launch(max_threads=400, ssr_mode=False)
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from model import models
|
| 3 |
+
from multit2i import (load_models, infer_fn, infer_rand_fn, save_gallery,
|
| 4 |
+
change_model, warm_model, get_model_info_md, loaded_models, warm_models,
|
| 5 |
+
get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
|
| 6 |
+
get_recom_prompt_type, set_recom_prompt_preset, get_tag_type, randomize_seed, translate_to_en)
|
| 7 |
+
from tagger.tagger import (predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
|
| 8 |
+
insert_recom_prompt, compose_prompt_to_copy)
|
| 9 |
+
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
|
| 10 |
+
from tagger.v2 import V2_ALL_MODELS, v2_random_prompt
|
| 11 |
+
from tagger.utils import (V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS,
|
| 12 |
+
V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
|
| 13 |
+
|
| 14 |
+
max_images = 6
|
| 15 |
+
MAX_SEED = 2**32-1
|
| 16 |
+
load_models(models)
|
| 17 |
+
warm_models(models[0:max_images])
|
| 18 |
+
|
| 19 |
+
css = """
|
| 20 |
+
.title { font-size: 3em; align-items: center; text-align: center; }
|
| 21 |
+
.info { align-items: center; text-align: center; }
|
| 22 |
+
.model_info { text-align: center; }
|
| 23 |
+
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
|
| 24 |
+
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
| 28 |
+
with gr.Tab("Image Generator"):
|
| 29 |
+
with gr.Row():
|
| 30 |
+
with gr.Column(scale=10):
|
| 31 |
+
with gr.Group():
|
| 32 |
+
with gr.Accordion("Prompt from Image File", open=False):
|
| 33 |
+
tagger_image = gr.Image(label="Input image", type="pil", format="png", sources=["upload", "clipboard"], height=256)
|
| 34 |
+
with gr.Accordion(label="Advanced options", open=False):
|
| 35 |
+
with gr.Row(equal_height=True):
|
| 36 |
+
tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
|
| 37 |
+
tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
|
| 38 |
+
tagger_tag_type = gr.Radio(label="Convert tags to", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
|
| 39 |
+
with gr.Row(equal_height=True):
|
| 40 |
+
tagger_recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
|
| 41 |
+
tagger_keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
|
| 42 |
+
tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
|
| 43 |
+
tagger_generate_from_image = gr.Button(value="Generate Tags from Image", variant="secondary")
|
| 44 |
+
with gr.Accordion("Prompt Transformer", open=False):
|
| 45 |
+
with gr.Row(equal_height=True):
|
| 46 |
+
v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2)
|
| 47 |
+
v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2)
|
| 48 |
+
with gr.Row(equal_height=True):
|
| 49 |
+
v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
|
| 50 |
+
v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
|
| 51 |
+
v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
|
| 52 |
+
with gr.Row(equal_height=True):
|
| 53 |
+
v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
|
| 54 |
+
v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
|
| 55 |
+
v2_tag_type = gr.Radio(label="Tag Type", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru", visible=False)
|
| 56 |
+
v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
|
| 57 |
+
v2_copy = gr.Button(value="Copy to clipboard", variant="secondary", size="sm", interactive=False)
|
| 58 |
+
random_prompt = gr.Button(value="Extend 🎲", variant="secondary")
|
| 59 |
+
prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
|
| 60 |
+
with gr.Accordion("Advanced options", open=False):
|
| 61 |
+
neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
|
| 62 |
+
with gr.Row(equal_height=True):
|
| 63 |
+
width = gr.Slider(label="Width", maximum=1216, step=32, value=0)
|
| 64 |
+
height = gr.Slider(label="Height", maximum=1216, step=32, value=0)
|
| 65 |
+
steps = gr.Slider(label="Number of inference steps", maximum=100, step=1, value=0)
|
| 66 |
+
with gr.Row(equal_height=True):
|
| 67 |
+
cfg = gr.Slider(label="Guidance scale", maximum=30.0, step=0.1, value=0)
|
| 68 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
| 69 |
+
seed_rand = gr.Button("Randomize Seed 🎲", size="sm", variant="secondary")
|
| 70 |
+
recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
|
| 71 |
+
with gr.Row(equal_height=True):
|
| 72 |
+
positive_prefix = gr.CheckboxGroup(label="Use Positive Prefix", choices=get_positive_prefix(), value=[])
|
| 73 |
+
positive_suffix = gr.CheckboxGroup(label="Use Positive Suffix", choices=get_positive_suffix(), value=["Common"])
|
| 74 |
+
negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
|
| 75 |
+
negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
|
| 76 |
+
with gr.Row(equal_height=True):
|
| 77 |
+
image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=2)
|
| 78 |
+
trans_prompt = gr.Button(value="Translate 📝", variant="secondary", size="sm", scale=2)
|
| 79 |
+
clear_prompt = gr.Button(value="Clear 🗑️", variant="secondary", size="sm", scale=1)
|
| 80 |
+
|
| 81 |
+
with gr.Row(equal_height=True):
|
| 82 |
+
run_button = gr.Button("Generate Image", variant="primary", scale=6)
|
| 83 |
+
random_button = gr.Button("Random Model 🎲", variant="secondary", scale=3)
|
| 84 |
+
#stop_button = gr.Button('Stop', variant="stop", interactive=False, scale=1)
|
| 85 |
+
with gr.Group():
|
| 86 |
+
model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
|
| 87 |
+
model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]), elem_classes="model_info")
|
| 88 |
+
with gr.Column(scale=10):
|
| 89 |
+
with gr.Group():
|
| 90 |
+
with gr.Row():
|
| 91 |
+
output = [gr.Image(label='', elem_classes="output", type="filepath", format="png",
|
| 92 |
+
show_download_button=True, show_share_button=False, show_label=False,
|
| 93 |
+
interactive=False, min_width=80, visible=True, width=112, height=112) for _ in range(max_images)]
|
| 94 |
+
with gr.Group():
|
| 95 |
+
results = gr.Gallery(label="Gallery", elem_classes="gallery", interactive=False, show_download_button=True, show_share_button=False,
|
| 96 |
+
container=True, format="png", object_fit="cover", columns=2, rows=2)
|
| 97 |
+
image_files = gr.Files(label="Download", interactive=False)
|
| 98 |
+
clear_results = gr.Button("Clear Gallery / Download 🗑️", variant="secondary")
|
| 99 |
+
with gr.Column():
|
| 100 |
+
examples = gr.Examples(
|
| 101 |
+
examples = [
|
| 102 |
+
["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
|
| 103 |
+
["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
|
| 104 |
+
["kafuu chino, 1girl, solo"],
|
| 105 |
+
["1girl"],
|
| 106 |
+
["beautiful sunset"],
|
| 107 |
+
],
|
| 108 |
+
inputs=[prompt],
|
| 109 |
+
cache_examples=False,
|
| 110 |
+
)
|
| 111 |
+
with gr.Tab("PNG Info"):
|
| 112 |
+
def extract_exif_data(image):
|
| 113 |
+
if image is None: return ""
|
| 114 |
+
try:
|
| 115 |
+
metadata_keys = ['parameters', 'metadata', 'prompt', 'Comment']
|
| 116 |
+
for key in metadata_keys:
|
| 117 |
+
if key in image.info:
|
| 118 |
+
return image.info[key]
|
| 119 |
+
return str(image.info)
|
| 120 |
+
except Exception as e:
|
| 121 |
+
return f"Error extracting metadata: {str(e)}"
|
| 122 |
+
with gr.Row():
|
| 123 |
+
with gr.Column():
|
| 124 |
+
image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])
|
| 125 |
+
with gr.Column():
|
| 126 |
+
result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)
|
| 127 |
+
image_metadata.change(
|
| 128 |
+
fn=extract_exif_data,
|
| 129 |
+
inputs=[image_metadata],
|
| 130 |
+
outputs=[result_metadata],
|
| 131 |
+
)
|
| 132 |
+
gr.DuplicateButton(value="Duplicate Space")
|
| 133 |
+
|
| 134 |
+
#gr.on(triggers=[run_button.click, prompt.submit, random_button.click], fn=lambda: gr.update(interactive=True), inputs=None, outputs=stop_button, show_api=False)
|
| 135 |
+
model_name.change(change_model, [model_name], [model_info], queue=False, show_api=False)\
|
| 136 |
+
.success(warm_model, [model_name], None, queue=False, show_api=False)
|
| 137 |
+
for i, o in enumerate(output):
|
| 138 |
+
img_i = gr.Number(i, visible=False)
|
| 139 |
+
image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
|
| 140 |
+
gen_event = gr.on(triggers=[run_button.click, prompt.submit],
|
| 141 |
+
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
|
| 142 |
+
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
|
| 143 |
+
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
| 144 |
+
outputs=[o], queue=False, show_api=False) # Be sure to delete ", queue=False" when activating the stop button
|
| 145 |
+
gen_event2 = gr.on(triggers=[random_button.click],
|
| 146 |
+
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
|
| 147 |
+
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
|
| 148 |
+
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
| 149 |
+
outputs=[o], queue=False, show_api=False) # Be sure to delete ", queue=False" when activating the stop button
|
| 150 |
+
o.change(save_gallery, [o, results], [results, image_files], show_api=False)
|
| 151 |
+
#stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event, gen_event2], show_api=False)
|
| 152 |
+
|
| 153 |
+
clear_prompt.click(lambda: (None, None, None, None), None, [prompt, neg_prompt, v2_character, v2_series], queue=False, show_api=False)
|
| 154 |
+
clear_results.click(lambda: (None, None), None, [results, image_files], queue=False, show_api=False)
|
| 155 |
+
recom_prompt_preset.change(set_recom_prompt_preset, [recom_prompt_preset],
|
| 156 |
+
[positive_prefix, positive_suffix, negative_prefix, negative_suffix], queue=False, show_api=False)
|
| 157 |
+
seed_rand.click(randomize_seed, None, [seed], queue=False, show_api=False)
|
| 158 |
+
trans_prompt.click(translate_to_en, [prompt], [prompt], queue=False, show_api=False)\
|
| 159 |
+
.then(translate_to_en, [neg_prompt], [neg_prompt], queue=False, show_api=False)
|
| 160 |
+
|
| 161 |
+
random_prompt.click(
|
| 162 |
+
v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
|
| 163 |
+
v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], show_api=False,
|
| 164 |
+
).success(get_tag_type, [positive_prefix, positive_suffix, negative_prefix, negative_suffix], [v2_tag_type], queue=False, show_api=False
|
| 165 |
+
).success(convert_danbooru_to_e621_prompt, [prompt, v2_tag_type], [prompt], queue=False, show_api=False)
|
| 166 |
+
tagger_generate_from_image.click(lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
|
| 167 |
+
).success(
|
| 168 |
+
predict_tags_wd,
|
| 169 |
+
[tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
|
| 170 |
+
[v2_series, v2_character, prompt, v2_copy],
|
| 171 |
+
show_api=False,
|
| 172 |
+
).success(predict_tags_fl2_sd3, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
|
| 173 |
+
).success(remove_specific_prompt, [prompt, tagger_keep_tags], [prompt], queue=False, show_api=False,
|
| 174 |
+
).success(convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
|
| 175 |
+
).success(insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
|
| 176 |
+
).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)
|
| 177 |
+
|
| 178 |
+
#demo.queue(default_concurrency_limit=200, max_size=200)
|
| 179 |
+
demo.launch(max_threads=400, ssr_mode=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|