Update app.py
Browse files
app.py
CHANGED
|
@@ -9,34 +9,39 @@ import seaborn as sns
|
|
| 9 |
# App title
|
| 10 |
st.title("🛍️ Customer Segmentation Tool")
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
st.
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
st.write("""
|
| 16 |
This app uses unsupervised learning techniques to segment customers based on their purchasing behavior.
|
| 17 |
The dataset is preloaded from an Excel file containing online retail data.
|
| 18 |
|
| 19 |
### How It Works:
|
| 20 |
-
1
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
- The data is processed by calculating the total amount spent (`TotalSpent`) for each customer. This is done by multiplying `Quantity` and `UnitPrice`.
|
| 25 |
-
- The information is then aggregated by `CustomerID` to summarize the total amount spent, the number of unique transactions, and the total quantity purchased by each customer.
|
| 26 |
-
|
| 27 |
-
3. **Apply K-Means Clustering**:
|
| 28 |
-
- The app applies K-Means clustering to segment the customers into distinct groups based on their purchasing behavior, using the processed data.
|
| 29 |
-
|
| 30 |
-
4. **Visualize the customer segments**:
|
| 31 |
-
- A scatter plot is created to visualize the customer segments, where customers are grouped based on the `TotalSpent` and the number of transactions (`NumTransactions`), with each cluster represented by different colors.
|
| 32 |
""")
|
| 33 |
|
| 34 |
# Load dataset
|
| 35 |
-
file_path = "Online Retail.xlsx"
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# Preprocess data
|
| 42 |
df = df.dropna(subset=["CustomerID"]) # Remove rows without CustomerID
|
|
@@ -53,32 +58,34 @@ customer_data = df.groupby("CustomerID").agg({
|
|
| 53 |
scaler = StandardScaler()
|
| 54 |
customer_scaled = pd.DataFrame(scaler.fit_transform(customer_data), columns=customer_data.columns, index=customer_data.index)
|
| 55 |
|
| 56 |
-
#
|
| 57 |
-
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
# Apply K-Means clustering
|
| 60 |
-
model = KMeans(n_clusters=num_clusters, random_state=42)
|
| 61 |
-
customer_data["Cluster"] = model.fit_predict(customer_scaled)
|
| 62 |
|
| 63 |
-
# Visualize the clusters
|
| 64 |
-
st.write("### Clusters Visualization")
|
| 65 |
-
fig, ax = plt.subplots()
|
| 66 |
-
scatter = ax.scatter(customer_data["TotalSpent"], customer_data["NumTransactions"], c=customer_data["Cluster"], cmap='viridis')
|
| 67 |
-
ax.set_xlabel("Total Spent")
|
| 68 |
-
ax.set_ylabel("Number of Transactions")
|
| 69 |
-
ax.set_title("Customer Segments")
|
| 70 |
-
plt.colorbar(scatter, label="Cluster")
|
| 71 |
-
st.pyplot(fig)
|
| 72 |
|
| 73 |
-
# Show the segmented customer data
|
| 74 |
-
st.write("### Customer Segments Data")
|
| 75 |
-
st.write(customer_data.head())
|
| 76 |
|
| 77 |
-
# Option to download the segmented data
|
| 78 |
-
csv = customer_data.to_csv(index=True)
|
| 79 |
-
st.download_button(
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
)
|
|
|
|
| 9 |
# App title
|
| 10 |
st.title("🛍️ Customer Segmentation Tool")
|
| 11 |
|
| 12 |
+
# 🎯 Streamlit Tabs
|
| 13 |
+
tab1, tab2, tab3 = st.tabs(["📖 About", "📊 Dataset Overview", "🧑🤝🧑 Customer Segmentation"])
|
| 14 |
+
|
| 15 |
+
# About Tab
|
| 16 |
+
with tab1:
|
| 17 |
st.write("""
|
| 18 |
This app uses unsupervised learning techniques to segment customers based on their purchasing behavior.
|
| 19 |
The dataset is preloaded from an Excel file containing online retail data.
|
| 20 |
|
| 21 |
### How It Works:
|
| 22 |
+
- **Step 1**: Load customer transaction data, including details like `Quantity`, `UnitPrice`, and `CustomerID`.
|
| 23 |
+
- **Step 2**: Process the data by calculating the total spent and aggregating the information by customer.
|
| 24 |
+
- **Step 3**: Apply **K-Means Clustering** to segment the customers into distinct groups.
|
| 25 |
+
- **Step 4**: Visualize the customer segments with a scatter plot, and optionally download the segmented data.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
""")
|
| 27 |
|
| 28 |
# Load dataset
|
| 29 |
+
file_path = "Online Retail.xlsx"
|
| 30 |
+
|
| 31 |
+
# Dataset Tab
|
| 32 |
+
with tab2:
|
| 33 |
+
try:
|
| 34 |
+
df = pd.read_excel(file_path, sheet_name="Online Retail")
|
| 35 |
+
st.write("### Dataset Overview")
|
| 36 |
+
st.write(df.head())
|
| 37 |
+
except Exception as e:
|
| 38 |
+
st.error(f"Error loading dataset: {e}")
|
| 39 |
+
st.stop()
|
| 40 |
|
| 41 |
+
# Verify the dataset columns
|
| 42 |
+
if not all(col in df.columns for col in ["CustomerID", "Quantity", "UnitPrice"]):
|
| 43 |
+
st.error("The dataset is missing required columns: 'CustomerID', 'Quantity', 'UnitPrice'. Please check the data.")
|
| 44 |
+
st.stop()
|
| 45 |
|
| 46 |
# Preprocess data
|
| 47 |
df = df.dropna(subset=["CustomerID"]) # Remove rows without CustomerID
|
|
|
|
| 58 |
scaler = StandardScaler()
|
| 59 |
customer_scaled = pd.DataFrame(scaler.fit_transform(customer_data), columns=customer_data.columns, index=customer_data.index)
|
| 60 |
|
| 61 |
+
# Customer Segmentation Tab
|
| 62 |
+
with tab3:
|
| 63 |
+
# User selects the number of clusters
|
| 64 |
+
num_clusters = st.slider("Select Number of Clusters", min_value=2, max_value=10, value=3)
|
| 65 |
|
| 66 |
+
# Apply K-Means clustering
|
| 67 |
+
model = KMeans(n_clusters=num_clusters, random_state=42)
|
| 68 |
+
customer_data["Cluster"] = model.fit_predict(customer_scaled)
|
| 69 |
|
| 70 |
+
# Visualize the clusters
|
| 71 |
+
st.write("### Clusters Visualization")
|
| 72 |
+
fig, ax = plt.subplots()
|
| 73 |
+
scatter = ax.scatter(customer_data["TotalSpent"], customer_data["NumTransactions"], c=customer_data["Cluster"], cmap='viridis')
|
| 74 |
+
ax.set_xlabel("Total Spent")
|
| 75 |
+
ax.set_ylabel("Number of Transactions")
|
| 76 |
+
ax.set_title("Customer Segments")
|
| 77 |
+
plt.colorbar(scatter, label="Cluster")
|
| 78 |
+
st.pyplot(fig)
|
| 79 |
|
| 80 |
+
# Show the segmented customer data
|
| 81 |
+
st.write("### Customer Segments Data")
|
| 82 |
+
st.write(customer_data.head())
|
| 83 |
|
| 84 |
+
# Option to download the segmented data
|
| 85 |
+
csv = customer_data.to_csv(index=True)
|
| 86 |
+
st.download_button(
|
| 87 |
+
label="Download Segmented Customer Data",
|
| 88 |
+
data=csv,
|
| 89 |
+
file_name="segmented_customer_data.csv",
|
| 90 |
+
mime="text/csv"
|
| 91 |
+
)
|