File size: 11,796 Bytes
687d3ce
 
 
 
 
 
9522bfe
687d3ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9522bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687d3ce
9522bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687d3ce
 
 
 
9522bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687d3ce
 
 
 
9522bfe
687d3ce
9522bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
687d3ce
9522bfe
687d3ce
9522bfe
687d3ce
9522bfe
 
 
687d3ce
9522bfe
687d3ce
 
 
 
 
9522bfe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from diffusers.models.attention_processor import FluxAttnProcessor2_0
from safetensors import safe_open
import re
import torch
from .layers_cache import MultiDoubleStreamBlockLoraProcessor, MultiSingleStreamBlockLoraProcessor

# 移除全局 device = "cuda",改为通过参数传递

def load_safetensors(path):
    tensors = {}
    with safe_open(path, framework="pt", device="cpu") as f:
        for key in f.keys():
            tensors[key] = f.get_tensor(key)
    return tensors

def get_lora_rank(checkpoint):
    for k in checkpoint.keys():
        if k.endswith(".down.weight"):
            return checkpoint[k].shape[0]

def load_checkpoint(local_path):
    if local_path is not None:
        if '.safetensors' in local_path:
            print(f"Loading .safetensors checkpoint from {local_path}")
            checkpoint = load_safetensors(local_path)
        else:
            print(f"Loading checkpoint from {local_path}")
            checkpoint = torch.load(local_path, map_location='cpu')
    return checkpoint

def update_model_with_lora(checkpoint, lora_weights, transformer, cond_size, device="cpu"):
    number = len(lora_weights)
    ranks = [get_lora_rank(checkpoint) for _ in range(number)]
    lora_attn_procs = {}
    double_blocks_idx = list(range(19))
    single_blocks_idx = list(range(38))
    for name, attn_processor in transformer.attn_processors.items():
        match = re.search(r'\.(\d+)\.', name)
        if match:
            layer_index = int(match.group(1))
        
        if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
            lora_state_dicts = {}
            for key, value in checkpoint.items():
                if re.search(r'\.(\d+)\.', key):
                    checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
                    if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
                        lora_state_dicts[key] = value
            
            lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
                dim=3072, 
                ranks=ranks, 
                network_alphas=ranks, 
                lora_weights=lora_weights, 
                device=device,  # 使用传入的 device 参数
                dtype=torch.bfloat16, 
                cond_width=cond_size, 
                cond_height=cond_size, 
                n_loras=number
            )
            
            # Load weights and move to specified device
            for n in range(number):
                lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
                lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
                lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
                lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
                lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
                lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
                lora_attn_procs[name].proj_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.down.weight', None)
                lora_attn_procs[name].proj_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.proj_loras.{n}.up.weight', None)
                lora_attn_procs[name].to(device)  # 使用传入的 device
            
        elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
            lora_state_dicts = {}
            for key, value in checkpoint.items():
                if re.search(r'\.(\d+)\.', key):
                    checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
                    if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
                        lora_state_dicts[key] = value
            
            lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
                dim=3072, 
                ranks=ranks, 
                network_alphas=ranks, 
                lora_weights=lora_weights, 
                device=device,  # 使用传入的 device 参数
                dtype=torch.bfloat16, 
                cond_width=cond_size, 
                cond_height=cond_size, 
                n_loras=number
            )
            # Load weights and move to specified device
            for n in range(number):
                lora_attn_procs[name].q_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.down.weight', None)
                lora_attn_procs[name].q_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.q_loras.{n}.up.weight', None)
                lora_attn_procs[name].k_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.down.weight', None)
                lora_attn_procs[name].k_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.k_loras.{n}.up.weight', None)
                lora_attn_procs[name].v_loras[n].down.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.down.weight', None)
                lora_attn_procs[name].v_loras[n].up.weight.data = lora_state_dicts.get(f'{name}.v_loras.{n}.up.weight', None)
                lora_attn_procs[name].to(device)  # 使用传入的 device
        else:
            lora_attn_procs[name] = FluxAttnProcessor2_0()

    transformer.set_attn_processor(lora_attn_procs)

def update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size, device="cpu"):  # 顺便更新此函数
    ck_number = len(checkpoints)
    cond_lora_number = [len(ls) for ls in lora_weights]
    cond_number = sum(cond_lora_number)
    ranks = [get_lora_rank(checkpoint) for checkpoint in checkpoints]
    multi_lora_weight = []
    for ls in lora_weights:
        for n in ls:
            multi_lora_weight.append(n)
    
    lora_attn_procs = {}
    double_blocks_idx = list(range(19))
    single_blocks_idx = list(range(38))
    for name, attn_processor in transformer.attn_processors.items():
        match = re.search(r'\.(\d+)\.', name)
        if match:
            layer_index = int(match.group(1))
        
        if name.startswith("transformer_blocks") and layer_index in double_blocks_idx:
            lora_state_dicts = [{} for _ in range(ck_number)]
            for idx, checkpoint in enumerate(checkpoints):
                for key, value in checkpoint.items():
                    if re.search(r'\.(\d+)\.', key):
                        checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
                        if checkpoint_layer_index == layer_index and key.startswith("transformer_blocks"):
                            lora_state_dicts[idx][key] = value
            
            lora_attn_procs[name] = MultiDoubleStreamBlockLoraProcessor(
                dim=3072, 
                ranks=ranks, 
                network_alphas=ranks, 
                lora_weights=multi_lora_weight, 
                device=device,  # 使用传入的 device 参数
                dtype=torch.bfloat16, 
                cond_width=cond_size, 
                cond_height=cond_size, 
                n_loras=cond_number
            )
            
            num = 0
            for idx in range(ck_number):
                for n in range(cond_lora_number[idx]):
                    lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
                    lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
                    lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
                    lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
                    lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
                    lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
                    lora_attn_procs[name].proj_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.down.weight', None)
                    lora_attn_procs[name].proj_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.proj_loras.{n}.up.weight', None)
                    lora_attn_procs[name].to(device)  # 使用传入的 device
                    num += 1
            
        elif name.startswith("single_transformer_blocks") and layer_index in single_blocks_idx:
            lora_state_dicts = [{} for _ in range(ck_number)]
            for idx, checkpoint in enumerate(checkpoints):
                for key, value in checkpoint.items():
                    if re.search(r'\.(\d+)\.', key):
                        checkpoint_layer_index = int(re.search(r'\.(\d+)\.', key).group(1))
                        if checkpoint_layer_index == layer_index and key.startswith("single_transformer_blocks"):
                            lora_state_dicts[idx][key] = value
            
            lora_attn_procs[name] = MultiSingleStreamBlockLoraProcessor(
                dim=3072, 
                ranks=ranks, 
                network_alphas=ranks, 
                lora_weights=multi_lora_weight, 
                device=device,  # 使用传入的 device 参数
                dtype=torch.bfloat16, 
                cond_width=cond_size, 
                cond_height=cond_size, 
                n_loras=cond_number
            )
            num = 0
            for idx in range(ck_number):
                for n in range(cond_lora_number[idx]):
                    lora_attn_procs[name].q_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.down.weight', None)
                    lora_attn_procs[name].q_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.q_loras.{n}.up.weight', None)
                    lora_attn_procs[name].k_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.down.weight', None)
                    lora_attn_procs[name].k_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.k_loras.{n}.up.weight', None)
                    lora_attn_procs[name].v_loras[num].down.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.down.weight', None)
                    lora_attn_procs[name].v_loras[num].up.weight.data = lora_state_dicts[idx].get(f'{name}.v_loras.{n}.up.weight', None)
                    lora_attn_procs[name].to(device)  # 使用传入的 device
                    num += 1
        else:
            lora_attn_procs[name] = FluxAttnProcessor2_0()

    transformer.set_attn_processor(lora_attn_procs)

def set_single_lora(transformer, local_path, lora_weights=[], cond_size=512, device="cpu"):
    checkpoint = load_checkpoint(local_path)
    update_model_with_lora(checkpoint, lora_weights, transformer, cond_size, device=device)

def set_multi_lora(transformer, local_paths, lora_weights=[[]], cond_size=512, device="cpu"):  # 顺便更新此函数
    checkpoints = [load_checkpoint(local_path) for local_path in local_paths]
    update_model_with_multi_lora(checkpoints, lora_weights, transformer, cond_size, device=device)

def unset_lora(transformer):
    lora_attn_procs = {}
    for name, attn_processor in transformer.attn_processors.items():
        lora_attn_procs[name] = FluxAttnProcessor2_0()
    transformer.set_attn_processor(lora_attn_procs)