Spaces:
Paused
Paused
Upload indicators.py
Browse files- trade_analysis/indicators.py +375 -0
trade_analysis/indicators.py
ADDED
|
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# trade_analysis/indicators.py
|
| 2 |
+
"""
|
| 3 |
+
Technical indicators module - Enhanced for momentum trading
|
| 4 |
+
Works with your enhanced_api.py and other modules
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import numpy as np
|
| 9 |
+
import warnings
|
| 10 |
+
warnings.filterwarnings('ignore')
|
| 11 |
+
|
| 12 |
+
def enrich_with_indicators(df: pd.DataFrame, interval_str: str) -> pd.DataFrame:
|
| 13 |
+
"""
|
| 14 |
+
Enrich dataframe with technical indicators
|
| 15 |
+
Compatible with your data.py output format
|
| 16 |
+
"""
|
| 17 |
+
if df.empty or 'Close' not in df.columns:
|
| 18 |
+
return pd.DataFrame()
|
| 19 |
+
|
| 20 |
+
print(f"Enriching data for interval: {interval_str}, {len(df)} rows.")
|
| 21 |
+
df_enriched = df.copy()
|
| 22 |
+
|
| 23 |
+
# Ensure we have all OHLCV columns
|
| 24 |
+
required_cols = ['Open', 'High', 'Low', 'Close', 'Volume']
|
| 25 |
+
for col in required_cols:
|
| 26 |
+
if col not in df_enriched.columns:
|
| 27 |
+
# Handle case variations (Close vs close)
|
| 28 |
+
lower_col = col.lower()
|
| 29 |
+
if lower_col in df_enriched.columns:
|
| 30 |
+
df_enriched[col] = df_enriched[lower_col]
|
| 31 |
+
else:
|
| 32 |
+
df_enriched[col] = np.nan
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
# Try using pandas_ta if available
|
| 36 |
+
import pandas_ta as ta
|
| 37 |
+
|
| 38 |
+
# 1. ADX (Length 9) - Momentum strength
|
| 39 |
+
try:
|
| 40 |
+
adx_results = ta.adx(df_enriched['High'], df_enriched['Low'],
|
| 41 |
+
df_enriched['Close'], length=9)
|
| 42 |
+
if adx_results is not None and not adx_results.empty:
|
| 43 |
+
df_enriched['ADX_9'] = adx_results.iloc[:, 0]
|
| 44 |
+
else:
|
| 45 |
+
df_enriched['ADX_9'] = 25.0 # Default neutral
|
| 46 |
+
except:
|
| 47 |
+
df_enriched['ADX_9'] = 25.0
|
| 48 |
+
|
| 49 |
+
# 2. RSI (Length 14) - Momentum oscillator
|
| 50 |
+
try:
|
| 51 |
+
rsi = ta.rsi(df_enriched['Close'], length=14)
|
| 52 |
+
df_enriched['RSI_14'] = rsi if rsi is not None else 50.0
|
| 53 |
+
except:
|
| 54 |
+
df_enriched['RSI_14'] = calculate_rsi_manual(df_enriched['Close'], 14)
|
| 55 |
+
|
| 56 |
+
# 3. MACD - Trend following
|
| 57 |
+
try:
|
| 58 |
+
macd = ta.macd(df_enriched['Close'], fast=12, slow=26, signal=9)
|
| 59 |
+
if macd is not None and not macd.empty:
|
| 60 |
+
# Find the histogram column
|
| 61 |
+
for col in macd.columns:
|
| 62 |
+
if 'h' in col.lower() or 'hist' in col.lower():
|
| 63 |
+
df_enriched['MACDh_12_26_9'] = macd[col]
|
| 64 |
+
break
|
| 65 |
+
else:
|
| 66 |
+
df_enriched['MACDh_12_26_9'] = 0
|
| 67 |
+
else:
|
| 68 |
+
df_enriched['MACDh_12_26_9'] = 0
|
| 69 |
+
except:
|
| 70 |
+
df_enriched['MACDh_12_26_9'] = 0
|
| 71 |
+
|
| 72 |
+
# 4. EMA (Length 9) - Fast moving average
|
| 73 |
+
try:
|
| 74 |
+
ema = ta.ema(df_enriched['Close'], length=9)
|
| 75 |
+
df_enriched['EMA_9'] = ema if ema is not None else df_enriched['Close'].ewm(span=9).mean()
|
| 76 |
+
except:
|
| 77 |
+
df_enriched['EMA_9'] = df_enriched['Close'].ewm(span=9, adjust=False).mean()
|
| 78 |
+
|
| 79 |
+
# 5. ATR (Length 14) - Volatility
|
| 80 |
+
try:
|
| 81 |
+
atr = ta.atr(df_enriched['High'], df_enriched['Low'],
|
| 82 |
+
df_enriched['Close'], length=14)
|
| 83 |
+
df_enriched['ATR_14'] = atr if atr is not None else calculate_atr_manual(df_enriched, 14)
|
| 84 |
+
except:
|
| 85 |
+
df_enriched['ATR_14'] = calculate_atr_manual(df_enriched, 14)
|
| 86 |
+
|
| 87 |
+
# 6. VWAP - Only for intraday
|
| 88 |
+
if interval_str in ['15m', '5m', '1m', 'hourly']:
|
| 89 |
+
try:
|
| 90 |
+
vwap = ta.vwap(df_enriched['High'], df_enriched['Low'],
|
| 91 |
+
df_enriched['Close'], df_enriched['Volume'])
|
| 92 |
+
df_enriched['VWAP'] = vwap if vwap is not None else df_enriched['Close']
|
| 93 |
+
except:
|
| 94 |
+
df_enriched['VWAP'] = calculate_vwap_manual(df_enriched)
|
| 95 |
+
|
| 96 |
+
except ImportError:
|
| 97 |
+
print("pandas_ta not available, using manual calculations")
|
| 98 |
+
# Fallback to manual calculations
|
| 99 |
+
df_enriched['RSI_14'] = calculate_rsi_manual(df_enriched['Close'], 14)
|
| 100 |
+
df_enriched['ADX_9'] = 25.0 # Default
|
| 101 |
+
df_enriched['MACDh_12_26_9'] = calculate_macd_histogram_manual(df_enriched['Close'])
|
| 102 |
+
df_enriched['EMA_9'] = df_enriched['Close'].ewm(span=9, adjust=False).mean()
|
| 103 |
+
df_enriched['ATR_14'] = calculate_atr_manual(df_enriched, 14)
|
| 104 |
+
if interval_str in ['15m', '5m', '1m', 'hourly']:
|
| 105 |
+
df_enriched['VWAP'] = calculate_vwap_manual(df_enriched)
|
| 106 |
+
|
| 107 |
+
# Custom momentum indicators for your strategy
|
| 108 |
+
|
| 109 |
+
# 7. Volume analysis
|
| 110 |
+
df_enriched['volume_ma_20'] = df_enriched['Volume'].rolling(20).mean()
|
| 111 |
+
df_enriched['volume_spike'] = df_enriched['Volume'] > (df_enriched['volume_ma_20'] * 2.0)
|
| 112 |
+
df_enriched['volume_exhaustion'] = (
|
| 113 |
+
df_enriched['Volume'].rolling(5).mean() < (df_enriched['volume_ma_20'] * 0.8)
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# 8. Price momentum
|
| 117 |
+
df_enriched['returns'] = df_enriched['Close'].pct_change()
|
| 118 |
+
df_enriched['momentum_5'] = df_enriched['Close'] / df_enriched['Close'].shift(5) - 1
|
| 119 |
+
df_enriched['momentum_10'] = df_enriched['Close'] / df_enriched['Close'].shift(10) - 1
|
| 120 |
+
|
| 121 |
+
# 9. Volatility
|
| 122 |
+
df_enriched['volatility'] = df_enriched['returns'].rolling(20).std() * np.sqrt(252)
|
| 123 |
+
|
| 124 |
+
# 10. High-Low ratio (for gap detection)
|
| 125 |
+
df_enriched['high_low_ratio'] = (
|
| 126 |
+
(df_enriched['High'] - df_enriched['Low']) / df_enriched['Close']
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
# 11. Support/Resistance levels
|
| 130 |
+
df_enriched['resistance'] = df_enriched['High'].rolling(20).max()
|
| 131 |
+
df_enriched['support'] = df_enriched['Low'].rolling(20).min()
|
| 132 |
+
|
| 133 |
+
# 12. Trend strength
|
| 134 |
+
sma_20 = df_enriched['Close'].rolling(20).mean()
|
| 135 |
+
sma_50 = df_enriched['Close'].rolling(50).mean()
|
| 136 |
+
df_enriched['trend_strength'] = (sma_20 - sma_50) / sma_50 * 100
|
| 137 |
+
|
| 138 |
+
# Clean up
|
| 139 |
+
df_enriched.fillna(method='bfill', inplace=True)
|
| 140 |
+
df_enriched.fillna(method='ffill', inplace=True)
|
| 141 |
+
df_enriched.fillna(0, inplace=True)
|
| 142 |
+
|
| 143 |
+
return df_enriched
|
| 144 |
+
|
| 145 |
+
def identify_current_setup(df: pd.DataFrame, timeframe_str: str) -> dict:
|
| 146 |
+
"""
|
| 147 |
+
Identify current market setup for trading decisions
|
| 148 |
+
Returns dict compatible with enhanced_api.py expectations
|
| 149 |
+
"""
|
| 150 |
+
if df.empty or len(df) < 2:
|
| 151 |
+
return {
|
| 152 |
+
"timeframe": timeframe_str,
|
| 153 |
+
"direction": "neutral",
|
| 154 |
+
"adx": 0,
|
| 155 |
+
"rsi": 50,
|
| 156 |
+
"gap_risk": "unknown",
|
| 157 |
+
"volume_spike": False,
|
| 158 |
+
"volume_exhaustion": False,
|
| 159 |
+
"error": "Insufficient data"
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
# Get latest values
|
| 163 |
+
latest = df.iloc[-1]
|
| 164 |
+
prev = df.iloc[-2] if len(df) > 1 else latest
|
| 165 |
+
|
| 166 |
+
# Determine direction
|
| 167 |
+
if latest.get('Close', 0) > prev.get('Close', 0):
|
| 168 |
+
direction = "up"
|
| 169 |
+
elif latest.get('Close', 0) < prev.get('Close', 0):
|
| 170 |
+
direction = "down"
|
| 171 |
+
else:
|
| 172 |
+
direction = "neutral"
|
| 173 |
+
|
| 174 |
+
# Gap risk assessment
|
| 175 |
+
atr_val = latest.get('ATR_14', 0)
|
| 176 |
+
close_val = latest.get('Close', 0)
|
| 177 |
+
gap_risk = "low"
|
| 178 |
+
|
| 179 |
+
if close_val > 0 and atr_val > 0:
|
| 180 |
+
atr_percentage = atr_val / close_val
|
| 181 |
+
if atr_percentage > 0.02:
|
| 182 |
+
gap_risk = "high"
|
| 183 |
+
elif atr_percentage > 0.01:
|
| 184 |
+
gap_risk = "moderate"
|
| 185 |
+
|
| 186 |
+
# Momentum assessment
|
| 187 |
+
rsi = latest.get('RSI_14', 50)
|
| 188 |
+
momentum_5 = latest.get('momentum_5', 0)
|
| 189 |
+
momentum_10 = latest.get('momentum_10', 0)
|
| 190 |
+
|
| 191 |
+
# Trend assessment
|
| 192 |
+
trend = "neutral"
|
| 193 |
+
if latest.get('EMA_9', 0) > latest.get('Close', 0):
|
| 194 |
+
trend = "bearish"
|
| 195 |
+
elif latest.get('EMA_9', 0) < latest.get('Close', 0):
|
| 196 |
+
trend = "bullish"
|
| 197 |
+
|
| 198 |
+
# Volume analysis
|
| 199 |
+
volume_spike = bool(latest.get('volume_spike', False))
|
| 200 |
+
volume_exhaustion = bool(latest.get('volume_exhaustion', False))
|
| 201 |
+
|
| 202 |
+
# Support/Resistance proximity
|
| 203 |
+
close = latest.get('Close', 0)
|
| 204 |
+
resistance = latest.get('resistance', close * 1.02)
|
| 205 |
+
support = latest.get('support', close * 0.98)
|
| 206 |
+
|
| 207 |
+
near_resistance = (resistance - close) / close < 0.005 # Within 0.5%
|
| 208 |
+
near_support = (close - support) / close < 0.005
|
| 209 |
+
|
| 210 |
+
# Build setup dictionary
|
| 211 |
+
setup = {
|
| 212 |
+
"timeframe": timeframe_str,
|
| 213 |
+
"direction": direction,
|
| 214 |
+
"adx": round(latest.get('ADX_9', 0), 2),
|
| 215 |
+
"rsi": round(rsi, 2),
|
| 216 |
+
"gap_risk": gap_risk,
|
| 217 |
+
"volume_spike": volume_spike,
|
| 218 |
+
"volume_exhaustion": volume_exhaustion,
|
| 219 |
+
"trend": trend,
|
| 220 |
+
"momentum_5": round(momentum_5 * 100, 2), # As percentage
|
| 221 |
+
"momentum_10": round(momentum_10 * 100, 2),
|
| 222 |
+
"volatility": round(latest.get('volatility', 0), 4),
|
| 223 |
+
"near_resistance": near_resistance,
|
| 224 |
+
"near_support": near_support,
|
| 225 |
+
"macd_histogram": round(latest.get('MACDh_12_26_9', 0), 4)
|
| 226 |
+
}
|
| 227 |
+
|
| 228 |
+
# Add timeframe-specific signals
|
| 229 |
+
if timeframe_str == "15m":
|
| 230 |
+
setup["scalp_ready"] = (
|
| 231 |
+
volume_spike and
|
| 232 |
+
abs(momentum_5) > 0.005 and
|
| 233 |
+
30 < rsi < 70
|
| 234 |
+
)
|
| 235 |
+
elif timeframe_str == "hourly":
|
| 236 |
+
setup["swing_ready"] = (
|
| 237 |
+
trend != "neutral" and
|
| 238 |
+
not volume_exhaustion and
|
| 239 |
+
20 < rsi < 80
|
| 240 |
+
)
|
| 241 |
+
elif timeframe_str == "daily":
|
| 242 |
+
setup["position_ready"] = (
|
| 243 |
+
latest.get('ADX_9', 0) > 25 and
|
| 244 |
+
trend != "neutral"
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
return setup
|
| 248 |
+
|
| 249 |
+
# Manual calculation functions (fallbacks)
|
| 250 |
+
|
| 251 |
+
def calculate_rsi_manual(close_prices: pd.Series, period: int = 14) -> pd.Series:
|
| 252 |
+
"""Manual RSI calculation"""
|
| 253 |
+
delta = close_prices.diff()
|
| 254 |
+
gain = delta.where(delta > 0, 0)
|
| 255 |
+
loss = -delta.where(delta < 0, 0)
|
| 256 |
+
|
| 257 |
+
avg_gain = gain.rolling(window=period).mean()
|
| 258 |
+
avg_loss = loss.rolling(window=period).mean()
|
| 259 |
+
|
| 260 |
+
rs = avg_gain / avg_loss
|
| 261 |
+
rsi = 100 - (100 / (1 + rs))
|
| 262 |
+
|
| 263 |
+
return rsi.fillna(50)
|
| 264 |
+
|
| 265 |
+
def calculate_atr_manual(df: pd.DataFrame, period: int = 14) -> pd.Series:
|
| 266 |
+
"""Manual ATR calculation"""
|
| 267 |
+
high = df['High']
|
| 268 |
+
low = df['Low']
|
| 269 |
+
close = df['Close']
|
| 270 |
+
|
| 271 |
+
tr1 = high - low
|
| 272 |
+
tr2 = abs(high - close.shift())
|
| 273 |
+
tr3 = abs(low - close.shift())
|
| 274 |
+
|
| 275 |
+
tr = pd.concat([tr1, tr2, tr3], axis=1).max(axis=1)
|
| 276 |
+
atr = tr.rolling(window=period).mean()
|
| 277 |
+
|
| 278 |
+
return atr.fillna(0)
|
| 279 |
+
|
| 280 |
+
def calculate_macd_histogram_manual(close_prices: pd.Series) -> pd.Series:
|
| 281 |
+
"""Manual MACD histogram calculation"""
|
| 282 |
+
ema_12 = close_prices.ewm(span=12, adjust=False).mean()
|
| 283 |
+
ema_26 = close_prices.ewm(span=26, adjust=False).mean()
|
| 284 |
+
macd_line = ema_12 - ema_26
|
| 285 |
+
signal_line = macd_line.ewm(span=9, adjust=False).mean()
|
| 286 |
+
histogram = macd_line - signal_line
|
| 287 |
+
|
| 288 |
+
return histogram.fillna(0)
|
| 289 |
+
|
| 290 |
+
def calculate_vwap_manual(df: pd.DataFrame) -> pd.Series:
|
| 291 |
+
"""Manual VWAP calculation"""
|
| 292 |
+
typical_price = (df['High'] + df['Low'] + df['Close']) / 3
|
| 293 |
+
cumulative_tpv = (typical_price * df['Volume']).cumsum()
|
| 294 |
+
cumulative_volume = df['Volume'].cumsum()
|
| 295 |
+
vwap = cumulative_tpv / cumulative_volume
|
| 296 |
+
|
| 297 |
+
return vwap.fillna(df['Close'])
|
| 298 |
+
|
| 299 |
+
# Additional helper functions for agent.py and other modules
|
| 300 |
+
|
| 301 |
+
def get_momentum_signals(df: pd.DataFrame) -> dict:
|
| 302 |
+
"""
|
| 303 |
+
Get momentum signals for the agent
|
| 304 |
+
Used by agent.py for quick decisions
|
| 305 |
+
"""
|
| 306 |
+
if df.empty or len(df) < 20:
|
| 307 |
+
return {"signal": "NEUTRAL", "strength": 0}
|
| 308 |
+
|
| 309 |
+
latest = df.iloc[-1]
|
| 310 |
+
|
| 311 |
+
# Check multiple momentum conditions
|
| 312 |
+
rsi = latest.get('RSI_14', 50)
|
| 313 |
+
momentum_5 = latest.get('momentum_5', 0)
|
| 314 |
+
volume_spike = latest.get('volume_spike', False)
|
| 315 |
+
macd_hist = latest.get('MACDh_12_26_9', 0)
|
| 316 |
+
|
| 317 |
+
# Bullish signals
|
| 318 |
+
if (rsi > 55 and momentum_5 > 0.01 and volume_spike and macd_hist > 0):
|
| 319 |
+
return {"signal": "BULLISH", "strength": 0.8}
|
| 320 |
+
elif (rsi > 50 and momentum_5 > 0.005):
|
| 321 |
+
return {"signal": "BULLISH", "strength": 0.6}
|
| 322 |
+
|
| 323 |
+
# Bearish signals
|
| 324 |
+
elif (rsi < 45 and momentum_5 < -0.01 and volume_spike and macd_hist < 0):
|
| 325 |
+
return {"signal": "BEARISH", "strength": 0.8}
|
| 326 |
+
elif (rsi < 50 and momentum_5 < -0.005):
|
| 327 |
+
return {"signal": "BEARISH", "strength": 0.6}
|
| 328 |
+
|
| 329 |
+
# Neutral
|
| 330 |
+
else:
|
| 331 |
+
return {"signal": "NEUTRAL", "strength": 0.3}
|
| 332 |
+
|
| 333 |
+
def calculate_entry_signals(df: pd.DataFrame, timeframe: str) -> dict:
|
| 334 |
+
"""
|
| 335 |
+
Calculate specific entry signals for different timeframes
|
| 336 |
+
Used by enhanced_api.py for options strategies
|
| 337 |
+
"""
|
| 338 |
+
if df.empty:
|
| 339 |
+
return {"entry": False, "confidence": 0}
|
| 340 |
+
|
| 341 |
+
setup = identify_current_setup(df, timeframe)
|
| 342 |
+
|
| 343 |
+
# Timeframe-specific entry logic
|
| 344 |
+
if timeframe in ["1m", "5m"]:
|
| 345 |
+
# Scalping entries
|
| 346 |
+
entry = (
|
| 347 |
+
setup.get('volume_spike', False) and
|
| 348 |
+
abs(setup.get('momentum_5', 0)) > 0.5 and
|
| 349 |
+
30 < setup.get('rsi', 50) < 70
|
| 350 |
+
)
|
| 351 |
+
confidence = 70 if entry else 30
|
| 352 |
+
|
| 353 |
+
elif timeframe == "15m":
|
| 354 |
+
# Momentum entries
|
| 355 |
+
entry = (
|
| 356 |
+
setup.get('direction') != 'neutral' and
|
| 357 |
+
setup.get('adx', 0) > 25 and
|
| 358 |
+
not setup.get('volume_exhaustion', False)
|
| 359 |
+
)
|
| 360 |
+
confidence = 75 if entry else 40
|
| 361 |
+
|
| 362 |
+
else: # Daily/Hourly
|
| 363 |
+
# Swing entries
|
| 364 |
+
entry = (
|
| 365 |
+
setup.get('trend') != 'neutral' and
|
| 366 |
+
20 < setup.get('rsi', 50) < 80 and
|
| 367 |
+
setup.get('adx', 0) > 20
|
| 368 |
+
)
|
| 369 |
+
confidence = 80 if entry else 35
|
| 370 |
+
|
| 371 |
+
return {
|
| 372 |
+
"entry": entry,
|
| 373 |
+
"confidence": confidence,
|
| 374 |
+
"setup_details": setup
|
| 375 |
+
}
|