File size: 2,835 Bytes
7ce6e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import torch
import logging
import numpy as np
from transformers import AutoTokenizer, AutoModel

class LanguageModel:
    def __init__(self, pre_trained_model_path, max_len=1000):
        """ Load pipeline for pre-trained model """
        
        self.max_len = max_len
        
        logging.info(f"Loading tokenizer for {pre_trained_model_path}")
        self.tokenizer = AutoTokenizer.from_pretrained(pre_trained_model_path)

        logging.info(f"Loading model for {pre_trained_model_path}")
        self.model = AutoModel.from_pretrained(
            pre_trained_model_path, 
        )

    def mean_pooling(self, model_output, attention_mask):
        token_embeddings = model_output[0]
        input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

    def get_chunks(self, s):
        """ Split long string into chunks based on max len """

        max_len = self.max_len
        start = 0
        end = 0
        while start + max_len  < len(s) and end != -1:
            end = s.rfind(" ", start, start + max_len + 1)
            yield s[start:end]
            start = end +1
        yield s[start:]

    def preprocess(self, text):
        text = str(text)
        text = text.lower()
        return text.strip()
        
    def featurize(self, input_text):
        """ Return feature vector for the input text """

        # split long text into multiple strings
        text_list = list(self.get_chunks(input_text))
        # apply text preprocessing
        processed_text_list = [self.preprocess(text) for text in text_list]
        # tokenize input
        max_length = max([len(text) for text in processed_text_list])
        encoded_input = self.tokenizer(processed_text_list, padding=True, 
                                       max_length=max_length, truncation=True, 
                                       return_tensors='pt')
        # get model output
        with torch.no_grad():
            model_output = self.model(**encoded_input)

        # get mean pooled output
        feature_list = self.mean_pooling(model_output, encoded_input['attention_mask'])
        feature_mean = np.average(feature_list, axis=0)

        return feature_mean
    
class Similarity:
    def __init__(self, featurize_fn):
        self.featurize_fn = featurize_fn

    def get_score(self, text1, text2):
        text1_features = self.featurize_fn(text1)
        text2_features = self.featurize_fn(text2)
        # calculate dot product
        similarity = np.dot(text1_features, text2_features)
        # normalize
        score = max(0, similarity - 70) / ((100 - 70))
        # handle for score going above 1
        score = min(1.0, score)
        return score