import sys import logging import gradio as gr # from flask import Flask, jsonify, request from similarity import LanguageModel, Similarity # app = Flask(__name__) PRE_TRAINED_MODEL_PATH = './model' def init_logger(): root_logger= logging.getLogger() root_logger.setLevel(logging.INFO) root_logger.addHandler(logging.StreamHandler(sys.stdout)) logging.info("Logger initialized") init_logger() lm = LanguageModel(pre_trained_model_path=PRE_TRAINED_MODEL_PATH, max_len=1000) similarity = Similarity(featurize_fn=lm.featurize) # @app.route('/getSimilarity/', methods=['GET', 'POST']) # def process_request(): # text1 = request.values.get('text1') # text2 = request.values.get('text2') # score = similarity.get_score(text1, text2) # response = {'similarity score': score} # response = jsonify(response) # response.headers.add("Access-Control-Allow-Origin", "*") # return response def process(text1, text2): #request: gr.Request # text1 = request.query_params.get("text1") # text2 = request.query_params.get("text2") score = similarity.get_score(text1, text2) response = {'similarity score': score} return response demo = gr.Interface( fn=process, inputs=[ gr.Textbox(lines=2), gr.Textbox(lines=2), ], outputs=gr.JSON(), allow_flagging="never" ) if __name__ == "__main__": # app.run(host="0.0.0.0", port=7860) demo.launch(server_name="0.0.0.0", server_port=7860,)