Spaces:
Sleeping
Sleeping
First update
Browse files
app.py
CHANGED
@@ -4,54 +4,103 @@ from PIL import Image
|
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
# 获取随机的颜色
|
9 |
def get_random_color():
|
10 |
c = tuple(np.random.randint(0, 256, 3).tolist())
|
11 |
return c
|
12 |
|
13 |
-
# 绘制ocr识别结果
|
14 |
def draw_ocr_bbox(image, boxes, colors):
|
15 |
-
|
16 |
-
|
17 |
-
for
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
return image
|
21 |
|
22 |
-
# torch.hub.download_url_to_file('https://i.imgur.com/aqMBT0i.jpg', 'example.jpg')
|
23 |
-
|
24 |
def inference(img: Image.Image, lang, confidence):
|
|
|
25 |
ocr = PaddleOCR(use_angle_cls=True, lang=lang, use_gpu=False,
|
26 |
det_model_dir=f'./models/det/{lang}',
|
27 |
cls_model_dir=f'./models/cls/{lang}',
|
28 |
rec_model_dir=f'./models/rec/{lang}')
|
29 |
-
|
|
|
30 |
img2np = np.array(img)
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
image = img.convert('RGB')
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
im_show = Image.fromarray(im_show)
|
45 |
-
data = [[json.dumps(item['boxes']), round(item['score'], 3), item['txt']] for item in final_result]
|
46 |
-
return im_show, data
|
47 |
|
48 |
-
title = '
|
49 |
-
description = '
|
50 |
|
51 |
examples = [
|
52 |
-
['example_imgs/example.jpg','en', 0.5],
|
53 |
-
['example_imgs/
|
54 |
-
['example_imgs/demo003.jpeg','en', 0.7],
|
55 |
]
|
56 |
|
57 |
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
|
@@ -59,17 +108,15 @@ css = ".output_image, .input_image {height: 40rem !important; width: 100% !impor
|
|
59 |
if __name__ == '__main__':
|
60 |
demo = gr.Interface(
|
61 |
inference,
|
62 |
-
[
|
63 |
-
|
64 |
-
|
|
|
65 |
],
|
66 |
-
|
67 |
-
[gr.Image(type='pil', label='Output'), gr.Dataframe(headers=[ 'bbox', 'score', 'text'], label='Result')],
|
68 |
title=title,
|
69 |
description=description,
|
70 |
examples=examples,
|
71 |
-
css=css
|
72 |
-
cache_examples=True # 添加缓存选项
|
73 |
)
|
74 |
-
demo.
|
75 |
-
demo.launch()
|
|
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import cv2
|
7 |
+
from gliner import GLiNER
|
8 |
+
|
9 |
+
# Initialize GLiNER model
|
10 |
+
gliner_model = GLiNER.from_pretrained("urchade/gliner_large-v2.1")
|
11 |
+
|
12 |
+
# Entity labels including website
|
13 |
+
labels = ["person name", "company name", "job title", "phone", "email", "address", "website"]
|
14 |
|
|
|
15 |
def get_random_color():
|
16 |
c = tuple(np.random.randint(0, 256, 3).tolist())
|
17 |
return c
|
18 |
|
|
|
19 |
def draw_ocr_bbox(image, boxes, colors):
|
20 |
+
valid_boxes = []
|
21 |
+
valid_colors = []
|
22 |
+
for box, color in zip(boxes, colors):
|
23 |
+
if len(box) > 0: # Only draw valid boxes
|
24 |
+
valid_boxes.append(box)
|
25 |
+
valid_colors.append(color)
|
26 |
+
|
27 |
+
for box, color in zip(valid_boxes, valid_colors):
|
28 |
+
box = np.array(box).reshape(-1, 1, 2).astype(np.int64)
|
29 |
+
image = cv2.polylines(np.array(image), [box], True, color, 2)
|
30 |
return image
|
31 |
|
|
|
|
|
32 |
def inference(img: Image.Image, lang, confidence):
|
33 |
+
# Initialize PaddleOCR
|
34 |
ocr = PaddleOCR(use_angle_cls=True, lang=lang, use_gpu=False,
|
35 |
det_model_dir=f'./models/det/{lang}',
|
36 |
cls_model_dir=f'./models/cls/{lang}',
|
37 |
rec_model_dir=f'./models/rec/{lang}')
|
38 |
+
|
39 |
+
# Process image
|
40 |
img2np = np.array(img)
|
41 |
+
ocr_result = ocr.ocr(img2np, cls=True)[0]
|
42 |
+
|
43 |
+
# Original OCR processing
|
44 |
+
ocr_items = []
|
45 |
+
if ocr_result:
|
46 |
+
boxes = [line[0] for line in ocr_result]
|
47 |
+
txts = [line[1][0] for line in ocr_result]
|
48 |
+
scores = [line[1][1] for line in ocr_result]
|
49 |
+
|
50 |
+
ocr_items = [
|
51 |
+
{'boxes': box, 'txt': txt, 'score': score, '_c': get_random_color()}
|
52 |
+
for box, txt, score in zip(boxes, txts, scores)
|
53 |
+
if score > confidence
|
54 |
+
]
|
55 |
+
|
56 |
+
# GLiNER Entity Extraction
|
57 |
+
combined_text = " ".join([item['txt'] for item in ocr_items])
|
58 |
+
gliner_entities = gliner_model.predict_entities(combined_text, labels, threshold=0.3)
|
59 |
+
|
60 |
+
# Add GLiNER entities (without boxes)
|
61 |
+
gliner_items = [
|
62 |
+
{'boxes': [], 'txt': f"{ent['text']} ({ent['label']})", 'score': 1.0, '_c': get_random_color()}
|
63 |
+
for ent in gliner_entities
|
64 |
+
]
|
65 |
+
|
66 |
+
# QR Code Detection
|
67 |
+
qr_items = []
|
68 |
+
qr_detector = cv2.QRCodeDetector()
|
69 |
+
retval, decoded_info, points, _ = qr_detector.detectAndDecodeMulti(img2np)
|
70 |
+
|
71 |
+
if retval:
|
72 |
+
for i, url in enumerate(decoded_info):
|
73 |
+
if url:
|
74 |
+
qr_box = points[i].reshape(-1, 2).tolist()
|
75 |
+
qr_items.append({
|
76 |
+
'boxes': qr_box,
|
77 |
+
'txt': url,
|
78 |
+
'score': 1.0,
|
79 |
+
'_c': get_random_color()
|
80 |
+
})
|
81 |
+
|
82 |
+
# Combine all results
|
83 |
+
final_result = ocr_items + gliner_items + qr_items
|
84 |
+
|
85 |
+
# Prepare output
|
86 |
image = img.convert('RGB')
|
87 |
+
image_with_boxes = draw_ocr_bbox(image,
|
88 |
+
[item['boxes'] for item in final_result],
|
89 |
+
[item['_c'] for item in final_result])
|
90 |
|
91 |
+
data = [
|
92 |
+
[json.dumps(item['boxes']), round(item['score'], 3), item['txt']]
|
93 |
+
for item in final_result
|
94 |
+
]
|
95 |
+
|
96 |
+
return Image.fromarray(image_with_boxes), data
|
|
|
|
|
|
|
97 |
|
98 |
+
title = 'Enhanced Business Card Scanner'
|
99 |
+
description = 'Combines OCR, entity recognition, and QR scanning'
|
100 |
|
101 |
examples = [
|
102 |
+
['example_imgs/example.jpg', 'en', 0.5],
|
103 |
+
['example_imgs/demo003.jpeg', 'en', 0.7],
|
|
|
104 |
]
|
105 |
|
106 |
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
|
|
|
108 |
if __name__ == '__main__':
|
109 |
demo = gr.Interface(
|
110 |
inference,
|
111 |
+
[
|
112 |
+
gr.Image(type='pil', label='Input'),
|
113 |
+
gr.Dropdown(choices=['en', 'fr', 'german', 'korean', 'japan'], value='en', label='Language'),
|
114 |
+
gr.Slider(0.1, 1, 0.5, step=0.1, label='Confidence Threshold')
|
115 |
],
|
116 |
+
[gr.Image(type='pil', label='Output'), gr.Dataframe(headers=['bbox', 'score', 'text'], label='Results')],
|
|
|
117 |
title=title,
|
118 |
description=description,
|
119 |
examples=examples,
|
120 |
+
css=css
|
|
|
121 |
)
|
122 |
+
demo.launch()
|
|