Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,8 @@ from bs4 import BeautifulSoup
|
|
7 |
import requests
|
8 |
from TTS.api import TTS
|
9 |
import tempfile
|
|
|
|
|
10 |
|
11 |
# Setup summarization LLM
|
12 |
summary_pipe = pipeline("text2text-generation", model="google/flan-t5-base", device=-1)
|
@@ -23,17 +25,15 @@ Summary:
|
|
23 |
|
24 |
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
|
25 |
|
26 |
-
# TTS model setup
|
27 |
tts_model = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False)
|
28 |
|
29 |
def extract_main_content(url):
|
30 |
try:
|
31 |
response = requests.get(url, timeout=10)
|
32 |
soup = BeautifulSoup(response.content, "html.parser")
|
33 |
-
|
34 |
for tag in soup(["nav", "header", "footer", "aside", "script", "style", "noscript"]):
|
35 |
tag.decompose()
|
36 |
-
|
37 |
paragraphs = soup.find_all("p")
|
38 |
content = "\n".join([p.get_text() for p in paragraphs if len(p.get_text()) > 60])
|
39 |
return content.strip()
|
@@ -42,39 +42,54 @@ def extract_main_content(url):
|
|
42 |
|
43 |
def generate_human_like_audio(text):
|
44 |
try:
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
except Exception as e:
|
49 |
-
|
|
|
50 |
|
51 |
def url_to_audio_summary(url):
|
52 |
try:
|
53 |
article_text = extract_main_content(url)
|
54 |
if article_text.startswith("Error"):
|
55 |
-
return article_text, None
|
56 |
|
57 |
-
# Truncate for model's 512-token limit
|
58 |
if len(article_text) > 1500:
|
59 |
article_text = article_text[:1500] + "..."
|
60 |
-
|
61 |
summary = summary_chain.invoke({"text": article_text})
|
62 |
summary = summary["text"] if isinstance(summary, dict) and "text" in summary else summary
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
return summary, None
|
67 |
-
|
68 |
-
return summary, audio_path
|
69 |
except Exception as e:
|
70 |
-
return f"Error: {str(e)}", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
iface = gr.Interface(
|
73 |
-
fn=
|
74 |
inputs=gr.Textbox(label="Article URL", placeholder="Paste a news/blog URL here..."),
|
75 |
outputs=[
|
76 |
gr.Textbox(label="Summary"),
|
77 |
-
gr.Audio(label="Preacher-style Audio Summary")
|
|
|
78 |
],
|
79 |
title="Preaching-Style URL to Audio Agent",
|
80 |
description="Summarizes article content and reads it aloud in a warm, preacher-style voice using YourTTS. CPU-only."
|
|
|
7 |
import requests
|
8 |
from TTS.api import TTS
|
9 |
import tempfile
|
10 |
+
import os
|
11 |
+
import shutil
|
12 |
|
13 |
# Setup summarization LLM
|
14 |
summary_pipe = pipeline("text2text-generation", model="google/flan-t5-base", device=-1)
|
|
|
25 |
|
26 |
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
|
27 |
|
28 |
+
# TTS model setup
|
29 |
tts_model = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False)
|
30 |
|
31 |
def extract_main_content(url):
|
32 |
try:
|
33 |
response = requests.get(url, timeout=10)
|
34 |
soup = BeautifulSoup(response.content, "html.parser")
|
|
|
35 |
for tag in soup(["nav", "header", "footer", "aside", "script", "style", "noscript"]):
|
36 |
tag.decompose()
|
|
|
37 |
paragraphs = soup.find_all("p")
|
38 |
content = "\n".join([p.get_text() for p in paragraphs if len(p.get_text()) > 60])
|
39 |
return content.strip()
|
|
|
42 |
|
43 |
def generate_human_like_audio(text):
|
44 |
try:
|
45 |
+
temp_dir = tempfile.mkdtemp()
|
46 |
+
wav_path = os.path.join(temp_dir, "summary.wav")
|
47 |
+
mp3_path = os.path.join(temp_dir, "summary.mp3")
|
48 |
+
|
49 |
+
tts_model.tts_to_file(text=text, file_path=wav_path)
|
50 |
+
|
51 |
+
# Convert to mp3 for download link (requires ffmpeg in Hugging Face Spaces)
|
52 |
+
os.system(f"ffmpeg -y -i {wav_path} -codec:a libmp3lame -qscale:a 4 {mp3_path}")
|
53 |
+
|
54 |
+
if os.path.exists(mp3_path):
|
55 |
+
return wav_path, mp3_path
|
56 |
+
else:
|
57 |
+
return wav_path, None
|
58 |
except Exception as e:
|
59 |
+
print(f"TTS ERROR: {e}")
|
60 |
+
return None, None
|
61 |
|
62 |
def url_to_audio_summary(url):
|
63 |
try:
|
64 |
article_text = extract_main_content(url)
|
65 |
if article_text.startswith("Error"):
|
66 |
+
return article_text, None, None
|
67 |
|
|
|
68 |
if len(article_text) > 1500:
|
69 |
article_text = article_text[:1500] + "..."
|
70 |
+
|
71 |
summary = summary_chain.invoke({"text": article_text})
|
72 |
summary = summary["text"] if isinstance(summary, dict) and "text" in summary else summary
|
73 |
|
74 |
+
wav_path, mp3_path = generate_human_like_audio(summary)
|
75 |
+
return summary, wav_path, mp3_path
|
|
|
|
|
|
|
76 |
except Exception as e:
|
77 |
+
return f"Error: {str(e)}", None, None
|
78 |
+
|
79 |
+
def interface_wrapper(url):
|
80 |
+
summary, wav_path, mp3_path = url_to_audio_summary(url)
|
81 |
+
download_html = ""
|
82 |
+
if mp3_path and os.path.exists(mp3_path):
|
83 |
+
download_html = f'<a href="file/{os.path.basename(mp3_path)}" download target="_blank">Click to download MP3</a>'
|
84 |
+
return summary, wav_path, download_html
|
85 |
|
86 |
iface = gr.Interface(
|
87 |
+
fn=interface_wrapper,
|
88 |
inputs=gr.Textbox(label="Article URL", placeholder="Paste a news/blog URL here..."),
|
89 |
outputs=[
|
90 |
gr.Textbox(label="Summary"),
|
91 |
+
gr.Audio(label="Preacher-style Audio Summary", type="filepath"),
|
92 |
+
gr.HTML(label="Download MP3")
|
93 |
],
|
94 |
title="Preaching-Style URL to Audio Agent",
|
95 |
description="Summarizes article content and reads it aloud in a warm, preacher-style voice using YourTTS. CPU-only."
|