Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| from .log import logger | |
| def get_dims_with_exclusion(dim, exclude=None): | |
| dims = list(range(dim)) | |
| if exclude is not None: | |
| dims.remove(exclude) | |
| return dims | |
| def save_checkpoint( | |
| net, checkpoints_path, epoch=None, prefix="", verbose=True, multi_gpu=False | |
| ): | |
| if epoch is None: | |
| checkpoint_name = "last_checkpoint.pth" | |
| else: | |
| checkpoint_name = f"{epoch:03d}.pth" | |
| if prefix: | |
| checkpoint_name = f"{prefix}_{checkpoint_name}" | |
| if not checkpoints_path.exists(): | |
| checkpoints_path.mkdir(parents=True) | |
| checkpoint_path = checkpoints_path / checkpoint_name | |
| if verbose: | |
| logger.info(f"Save checkpoint to {str(checkpoint_path)}") | |
| net = net.module if multi_gpu else net | |
| torch.save( | |
| {"state_dict": net.state_dict(), "config": net._config}, str(checkpoint_path) | |
| ) | |
| def get_bbox_from_mask(mask): | |
| rows = np.any(mask, axis=1) | |
| cols = np.any(mask, axis=0) | |
| rmin, rmax = np.where(rows)[0][[0, -1]] | |
| cmin, cmax = np.where(cols)[0][[0, -1]] | |
| return rmin, rmax, cmin, cmax | |
| def expand_bbox(bbox, expand_ratio, min_crop_size=None): | |
| rmin, rmax, cmin, cmax = bbox | |
| rcenter = 0.5 * (rmin + rmax) | |
| ccenter = 0.5 * (cmin + cmax) | |
| height = expand_ratio * (rmax - rmin + 1) | |
| width = expand_ratio * (cmax - cmin + 1) | |
| if min_crop_size is not None: | |
| height = max(height, min_crop_size) | |
| width = max(width, min_crop_size) | |
| rmin = int(round(rcenter - 0.5 * height)) | |
| rmax = int(round(rcenter + 0.5 * height)) | |
| cmin = int(round(ccenter - 0.5 * width)) | |
| cmax = int(round(ccenter + 0.5 * width)) | |
| return rmin, rmax, cmin, cmax | |
| def clamp_bbox(bbox, rmin, rmax, cmin, cmax): | |
| return ( | |
| max(rmin, bbox[0]), | |
| min(rmax, bbox[1]), | |
| max(cmin, bbox[2]), | |
| min(cmax, bbox[3]), | |
| ) | |
| def get_bbox_iou(b1, b2): | |
| h_iou = get_segments_iou(b1[:2], b2[:2]) | |
| w_iou = get_segments_iou(b1[2:4], b2[2:4]) | |
| return h_iou * w_iou | |
| def get_segments_iou(s1, s2): | |
| a, b = s1 | |
| c, d = s2 | |
| intersection = max(0, min(b, d) - max(a, c) + 1) | |
| union = max(1e-6, max(b, d) - min(a, c) + 1) | |
| return intersection / union | |
| def get_labels_with_sizes(x): | |
| obj_sizes = np.bincount(x.flatten()) | |
| labels = np.nonzero(obj_sizes)[0].tolist() | |
| labels = [x for x in labels if x != 0] | |
| return labels, obj_sizes[labels].tolist() | |