Update app.py
Browse files
app.py
CHANGED
|
@@ -1,101 +1,103 @@
|
|
| 1 |
-
# app.py — Hugging Face Space (Gradio) using a prebuilt Chroma index
|
| 2 |
-
# Embeddings: nomic-ai/nomic-embed-text-v1.5 (HF), trust_remote_code=True, normalize_embeddings=True
|
| 3 |
-
|
| 4 |
-
import os
|
| 5 |
-
import gradio as gr
|
| 6 |
-
|
| 7 |
-
# Silence Chroma telemetry noise
|
| 8 |
-
os.environ["CHROMA_TELEMETRY_DISABLED"] = "1"
|
| 9 |
-
|
| 10 |
-
from chromadb.config import Settings
|
| 11 |
-
from langchain_chroma import Chroma
|
| 12 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 13 |
-
|
| 14 |
-
# -------- Config (can be overridden via Space "Variables") --------
|
| 15 |
-
PERSIST_DIR = os.getenv("PERSIST_DIR", "./chroma_langchain") # path to your committed Chroma index
|
| 16 |
-
EMB_MODEL = os.getenv("EMB_MODEL", "nomic-ai/nomic-embed-text-v1.5")
|
| 17 |
-
TOPK_DEF = int(os.getenv("TOPK", "5"))
|
| 18 |
-
|
| 19 |
-
# Embedding function for query text — must match the model used to build the index
|
| 20 |
-
EMBEDDINGS = HuggingFaceEmbeddings(
|
| 21 |
-
model_name=EMB_MODEL,
|
| 22 |
-
model_kwargs={"trust_remote_code": True},
|
| 23 |
-
encode_kwargs={"normalize_embeddings": True},
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
def load_vector_store():
|
| 27 |
-
"""
|
| 28 |
-
Load the persisted Chroma collection with the embedding function for query-time encoding.
|
| 29 |
-
Returns (vs, error_message_or_None)
|
| 30 |
-
"""
|
| 31 |
-
try:
|
| 32 |
-
vs = Chroma(
|
| 33 |
-
persist_directory=PERSIST_DIR,
|
| 34 |
-
embedding_function=EMBEDDINGS,
|
| 35 |
-
client_settings=Settings(anonymized_telemetry=False),
|
| 36 |
-
)
|
| 37 |
-
# sanity check (forces collection open)
|
| 38 |
-
_ = vs._collection.count()
|
| 39 |
-
return vs, None
|
| 40 |
-
except Exception as e:
|
| 41 |
-
# Helpful diagnostics: list available collections
|
| 42 |
-
try:
|
| 43 |
-
import chromadb
|
| 44 |
-
client = chromadb.PersistentClient(
|
| 45 |
-
path=PERSIST_DIR, settings=Settings(anonymized_telemetry=False)
|
| 46 |
-
)
|
| 47 |
-
existing = [c.name for c in client.list_collections()]
|
| 48 |
-
except Exception:
|
| 49 |
-
existing = []
|
| 50 |
-
msg = (
|
| 51 |
-
f"Failed to load Chroma store at '{PERSIST_DIR}'. "
|
| 52 |
-
f"Existing collections: {existing or '—'}. "
|
| 53 |
-
"Check that the index folder is present in the Space and the collection name matches."
|
| 54 |
-
)
|
| 55 |
-
return None, f"{msg}\n\nDetails: {e}"
|
| 56 |
-
|
| 57 |
-
VS, LOAD_ERR = load_vector_store()
|
| 58 |
-
|
| 59 |
-
def search(query: str, k: int = TOPK_DEF):
|
| 60 |
-
if LOAD_ERR:
|
| 61 |
-
return f"⚠️ {LOAD_ERR}"
|
| 62 |
-
q = (query or "").strip()
|
| 63 |
-
if not q:
|
| 64 |
-
return "Please enter a query."
|
| 65 |
-
try:
|
| 66 |
-
results = VS.similarity_search_with_score(q, k=int(k))
|
| 67 |
-
except Exception as e:
|
| 68 |
-
return f"Search failed: {e}"
|
| 69 |
-
if not results:
|
| 70 |
-
return "No results."
|
| 71 |
-
|
| 72 |
-
lines = [f"### Top {len(results)} results"]
|
| 73 |
-
for i, (doc, score) in enumerate(results, 1):
|
| 74 |
-
meta = doc.metadata or {}
|
| 75 |
-
src = meta.get("source") or meta.get("file_path") or "(no source)"
|
| 76 |
-
snippet = (doc.page_content[:800] + "…") if len(doc.page_content) > 800 else doc.page_content
|
| 77 |
-
lines.append(f"**[{i}]** \nSimilarity: `{score:.4f}`\n\n> {snippet}")
|
| 78 |
-
lines.append("\n> **Disclaimer:** Models can produce incorrect or misleading statements. Verify with sources.")
|
| 79 |
-
return "\n\n".join(lines)
|
| 80 |
-
|
| 81 |
-
with gr.Blocks(title="Semantische Suchmaschine für BGH Leitsatzentscheidungen v0.1") as demo:
|
| 82 |
-
gr.Markdown(
|
| 83 |
-
"""
|
| 84 |
-
## Semantische Suchmaschine für BGH Leitsatzentscheidungen v0.1
|
| 85 |
-
Datensatz:
|
| 86 |
-
|
| 87 |
-
**
|
| 88 |
-
|
| 89 |
-
**
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py — Hugging Face Space (Gradio) using a prebuilt Chroma index
|
| 2 |
+
# Embeddings: nomic-ai/nomic-embed-text-v1.5 (HF), trust_remote_code=True, normalize_embeddings=True
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
# Silence Chroma telemetry noise
|
| 8 |
+
os.environ["CHROMA_TELEMETRY_DISABLED"] = "1"
|
| 9 |
+
|
| 10 |
+
from chromadb.config import Settings
|
| 11 |
+
from langchain_chroma import Chroma
|
| 12 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 13 |
+
|
| 14 |
+
# -------- Config (can be overridden via Space "Variables") --------
|
| 15 |
+
PERSIST_DIR = os.getenv("PERSIST_DIR", "./chroma_langchain") # path to your committed Chroma index
|
| 16 |
+
EMB_MODEL = os.getenv("EMB_MODEL", "nomic-ai/nomic-embed-text-v1.5")
|
| 17 |
+
TOPK_DEF = int(os.getenv("TOPK", "5"))
|
| 18 |
+
|
| 19 |
+
# Embedding function for query text — must match the model used to build the index
|
| 20 |
+
EMBEDDINGS = HuggingFaceEmbeddings(
|
| 21 |
+
model_name=EMB_MODEL,
|
| 22 |
+
model_kwargs={"trust_remote_code": True},
|
| 23 |
+
encode_kwargs={"normalize_embeddings": True},
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
def load_vector_store():
|
| 27 |
+
"""
|
| 28 |
+
Load the persisted Chroma collection with the embedding function for query-time encoding.
|
| 29 |
+
Returns (vs, error_message_or_None)
|
| 30 |
+
"""
|
| 31 |
+
try:
|
| 32 |
+
vs = Chroma(
|
| 33 |
+
persist_directory=PERSIST_DIR,
|
| 34 |
+
embedding_function=EMBEDDINGS,
|
| 35 |
+
client_settings=Settings(anonymized_telemetry=False),
|
| 36 |
+
)
|
| 37 |
+
# sanity check (forces collection open)
|
| 38 |
+
_ = vs._collection.count()
|
| 39 |
+
return vs, None
|
| 40 |
+
except Exception as e:
|
| 41 |
+
# Helpful diagnostics: list available collections
|
| 42 |
+
try:
|
| 43 |
+
import chromadb
|
| 44 |
+
client = chromadb.PersistentClient(
|
| 45 |
+
path=PERSIST_DIR, settings=Settings(anonymized_telemetry=False)
|
| 46 |
+
)
|
| 47 |
+
existing = [c.name for c in client.list_collections()]
|
| 48 |
+
except Exception:
|
| 49 |
+
existing = []
|
| 50 |
+
msg = (
|
| 51 |
+
f"Failed to load Chroma store at '{PERSIST_DIR}'. "
|
| 52 |
+
f"Existing collections: {existing or '—'}. "
|
| 53 |
+
"Check that the index folder is present in the Space and the collection name matches."
|
| 54 |
+
)
|
| 55 |
+
return None, f"{msg}\n\nDetails: {e}"
|
| 56 |
+
|
| 57 |
+
VS, LOAD_ERR = load_vector_store()
|
| 58 |
+
|
| 59 |
+
def search(query: str, k: int = TOPK_DEF):
|
| 60 |
+
if LOAD_ERR:
|
| 61 |
+
return f"⚠️ {LOAD_ERR}"
|
| 62 |
+
q = (query or "").strip()
|
| 63 |
+
if not q:
|
| 64 |
+
return "Please enter a query."
|
| 65 |
+
try:
|
| 66 |
+
results = VS.similarity_search_with_score(q, k=int(k))
|
| 67 |
+
except Exception as e:
|
| 68 |
+
return f"Search failed: {e}"
|
| 69 |
+
if not results:
|
| 70 |
+
return "No results."
|
| 71 |
+
|
| 72 |
+
lines = [f"### Top {len(results)} results"]
|
| 73 |
+
for i, (doc, score) in enumerate(results, 1):
|
| 74 |
+
meta = doc.metadata or {}
|
| 75 |
+
src = meta.get("source") or meta.get("file_path") or "(no source)"
|
| 76 |
+
snippet = (doc.page_content[:800] + "…") if len(doc.page_content) > 800 else doc.page_content
|
| 77 |
+
lines.append(f"**[{i}]** \nSimilarity: `{score:.4f}`\n\n> {snippet}")
|
| 78 |
+
lines.append("\n> **Disclaimer:** Models can produce incorrect or misleading statements. Verify with sources.")
|
| 79 |
+
return "\n\n".join(lines)
|
| 80 |
+
|
| 81 |
+
with gr.Blocks(title="Semantische Suchmaschine für BGH Leitsatzentscheidungen v0.1") as demo:
|
| 82 |
+
gr.Markdown(
|
| 83 |
+
"""
|
| 84 |
+
## Semantische Suchmaschine für BGH Leitsatzentscheidungen v0.1
|
| 85 |
+
**Datensatz: 21.603 Leitsatzentscheidungen des BGH (ab dem Jahr 2000) extrahiert aus https://zenodo.org/records/15153244**
|
| 86 |
+
|
| 87 |
+
**Modell:** nomic-ai/nomic-embed-text-v1.5
|
| 88 |
+
|
| 89 |
+
**Wie es funktioniert:** Ermöglicht die semantische Suche im Datensatz und gibt die Entscheidungen geordnet nach Ähnlichkeitswerten zurück.
|
| 90 |
+
|
| 91 |
+
**Versuche bespielsweise:**
|
| 92 |
+
- `Kann KI Erfinder sein?` → erwartetes Aktenzeichen **X ZB 5/22**
|
| 93 |
+
|
| 94 |
+
*Disclaimer:* Models may produce incorrect or misleading statements. Verify with sources.
|
| 95 |
+
"""
|
| 96 |
+
)
|
| 97 |
+
with gr.Row():
|
| 98 |
+
q = gr.Textbox(label="Query", placeholder="Kann KI Erfinder sein?")
|
| 99 |
+
k = gr.Slider(1, 20, value=TOPK_DEF, step=1, label="Top-K")
|
| 100 |
+
out = gr.Markdown()
|
| 101 |
+
gr.Button("Search").click(fn=search, inputs=[q, k], outputs=[out])
|
| 102 |
+
|
| 103 |
+
demo.launch()
|