Spaces:
Running
Running
File size: 3,120 Bytes
4a8b164 84b4827 4a8b164 84b4827 4a8b164 84b4827 4a8b164 84b4827 4a8b164 84b4827 4a8b164 84b4827 4a8b164 84b4827 4a8b164 84b4827 4a8b164 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@huggingface/[email protected]';
// Reference the elements that we will need
const status = document.getElementById('status');
const fileUpload = document.getElementById('upload');
const imageContainer = document.getElementById('container');
const example = document.getElementById('example');
const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg';
import http from 'http';
import querystring from 'querystring';
import url from 'url';
import { pipeline, env } from '@xenova/transformers';
class MyClassificationPipeline {
static task = 'text-classification';
static model = 'databoyface/distilbert-base-cased-ome-v4.2';
static instance = null;
static async getInstance(progress_callback = null) {
if (this.instance === null) {
// NOTE: Uncomment this to change the cache directory
// env.cacheDir = './.cache';
this.instance = pipeline(this.task, this.model, { progress_callback });
}
return this.instance;
}
}
// Comment out this line if you don't want to start loading the model as soon as the server starts.
// If commented out, the model will be loaded when the first request is received (i.e,. lazily).
MyClassificationPipeline.getInstance();
// Define the HTTP server
const server = http.createServer();
const hostname = '127.0.0.1';
const port = 3000;
// Listen for requests made to the server
server.on('request', async (req, res) => {
// Parse the request URL
const parsedUrl = url.parse(req.url);
// Extract the query parameters
const { text } = querystring.parse(parsedUrl.query);
// Set the response headers
res.setHeader('Content-Type', 'application/json');
let response;
if (parsedUrl.pathname === '/classify' && text) {
const classifier = await MyClassificationPipeline.getInstance();
response = await classifier(text);
res.statusCode = 200;
} else {
response = { 'error': 'Bad request' }
res.statusCode = 400;
}
// Send the JSON response
res.end(JSON.stringify(response));
});
server.listen(port, hostname, () => {
console.log(`Server running at http://${hostname}:${port}/`);
});
// Render a bounding box and label on the image
function renderBox({ box, label }) {
const { xmax, xmin, ymax, ymin } = box;
// Generate a random color for the box
const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0);
// Draw the box
const boxElement = document.createElement('div');
boxElement.className = 'bounding-box';
Object.assign(boxElement.style, {
borderColor: color,
left: 100 * xmin + '%',
top: 100 * ymin + '%',
width: 100 * (xmax - xmin) + '%',
height: 100 * (ymax - ymin) + '%',
})
// Draw label
const labelElement = document.createElement('span');
labelElement.textContent = label;
labelElement.className = 'bounding-box-label';
labelElement.style.backgroundColor = color;
boxElement.appendChild(labelElement);
imageContainer.appendChild(boxElement);
}
|