Spaces:
Running
Running
File size: 91,028 Bytes
9392036 ed8f744 913507e 39eafab 6b1f66d ff7de4b 5498932 b79fb2d d967697 f5f7066 6141903 af68571 6b1f66d ce05869 706a810 fa0575b 640dcd1 ff7de4b f80e37d 706a810 1280fd8 6141903 640dcd1 71eb50f f24148c 71eb50f 9392036 1280fd8 9392036 2ee3fae 9392036 f68ccbb 1280fd8 913507e 574aa10 f24148c 6ee3759 574aa10 6ee3759 757102e 574aa10 6ee3759 f872421 529a2e6 89ffe36 529a2e6 09537d6 6b1f66d 757102e 6b1f66d 757102e 09537d6 757102e 09537d6 757102e 6b1f66d 757102e 09537d6 757102e 89ffe36 c300990 09537d6 1af1b88 c300990 1af1b88 6b1f66d a448d0f 6b1f66d a448d0f 09537d6 a448d0f 1af1b88 a448d0f 6b1f66d a448d0f 09537d6 757102e 8bcb11e 0ac9498 e9d1dec 0ac9498 7affc5d 0ac9498 89ffe36 f872421 a448d0f 09537d6 71eb50f a448d0f 09537d6 a448d0f 09537d6 a448d0f 71eb50f b79fb2d 71eb50f b79fb2d 71eb50f b79fb2d a448d0f 71eb50f a448d0f 71eb50f b79fb2d a448d0f 71eb50f a448d0f 71eb50f b79fb2d a448d0f b79fb2d a448d0f 09537d6 a448d0f 2f05ff8 09537d6 a448d0f 09537d6 a448d0f 09537d6 a448d0f 09537d6 6b1f66d ed8f744 6ee3759 ed8f744 6b1f66d 6ee3759 6b1f66d 6ee3759 ed8f744 6b1f66d 6ee3759 6b1f66d ed8f744 6b1f66d ed8f744 f872421 757102e 6b1f66d ed8f744 6b1f66d d966a8e 757102e 09537d6 6b1f66d f541667 6b1f66d ed8f744 6b1f66d ed8f744 71eb50f ed8f744 b79fb2d 89ffe36 f5f7066 6141903 f5f7066 89ffe36 f5e34b2 a448d0f 4279043 89ffe36 3139646 71eb50f 3139646 71eb50f 0598719 f5f7066 0598719 b79fb2d 71eb50f b79fb2d f872421 ed8f744 b79fb2d ce05869 b79fb2d ce05869 a448d0f ce05869 a448d0f 2f05ff8 b79fb2d ce05869 a448d0f ce05869 b79fb2d ce05869 b79fb2d ce05869 2f05ff8 ce05869 3139646 a448d0f 0598719 71eb50f a448d0f 3139646 a448d0f 640dcd1 b79fb2d a448d0f ce05869 a448d0f b79fb2d a448d0f ce05869 a448d0f f541667 a685ec6 f24148c 09537d6 529a2e6 f24148c 529a2e6 f24148c f541667 529a2e6 a448d0f a685ec6 8b0263d a685ec6 a448d0f a685ec6 a448d0f 6b1f66d a448d0f c300990 a448d0f b79fb2d c300990 b79fb2d a448d0f b79fb2d f541667 a448d0f b79fb2d a448d0f 0598719 71eb50f 0598719 71eb50f 0598719 b79fb2d 71eb50f cbe4d30 3139646 cbe4d30 0598719 a448d0f 89ffe36 d966a8e ed8f744 f541667 dc8144e 8b6c8b4 dc8144e 8b6c8b4 dc8144e c300990 af68571 6b1f66d af68571 69db70c af68571 08f9513 af68571 8b6c8b4 c300990 640dcd1 c300990 f5f7066 6141903 f5f7066 d967697 640dcd1 f5f7066 c300990 640dcd1 c300990 640dcd1 c300990 640dcd1 cbe4d30 eff2e30 640dcd1 eff2e30 640dcd1 eff2e30 576d618 640dcd1 eff2e30 640dcd1 eff2e30 576d618 640dcd1 eff2e30 640dcd1 eff2e30 576d618 640dcd1 eff2e30 640dcd1 eff2e30 640dcd1 eff2e30 640dcd1 eff2e30 640dcd1 eff2e30 640dcd1 eff2e30 640dcd1 eff2e30 b94baa7 eff2e30 b94baa7 eff2e30 640dcd1 eff2e30 b94baa7 eff2e30 640dcd1 8b0263d 2562163 640dcd1 2562163 640dcd1 2562163 640dcd1 eff2e30 640dcd1 b94baa7 640dcd1 b94baa7 640dcd1 b94baa7 640dcd1 eff2e30 b94baa7 640dcd1 eff2e30 640dcd1 eff2e30 640dcd1 60b5cc8 ff7de4b b245512 640dcd1 b245512 640dcd1 b245512 640dcd1 b245512 640dcd1 b245512 640dcd1 b245512 640dcd1 b245512 640dcd1 b245512 640dcd1 706a810 be6cf3a 706a810 640dcd1 706a810 bfe8480 706a810 bfe8480 706a810 bfe8480 706a810 104fcb7 fa0575b 104fcb7 ff7de4b 104fcb7 0416e62 706a810 2f91a8e bfe8480 104fcb7 bfe8480 33f25cc 003c3e3 bfe8480 2f91a8e bfe8480 2f91a8e bfe8480 2f91a8e 08ad32f bfe8480 2f91a8e bfe8480 104fcb7 bfe8480 16e804d bfe8480 16e804d bfe8480 2f91a8e bfe8480 2f91a8e f80e37d f68ccbb f80e37d f68ccbb f80e37d f68ccbb f80e37d 0838555 1904d0c dc8144e 5289fc1 1904d0c dc8144e 1904d0c dc8144e 1904d0c dc8144e 1904d0c dc8144e 1904d0c 8a63ffd 1904d0c 8a63ffd 1904d0c 8a63ffd 1904d0c 6ff76c2 1904d0c 6ff76c2 5dd334e 357377d 6ff76c2 ec6ae3f 6ff76c2 357377d 1904d0c 5dd334e 1904d0c 877e0b7 1904d0c f3b063f 554f351 1904d0c f3b063f 1904d0c f3b063f 1904d0c ed9740d 1904d0c ed9740d 1904d0c 08ad32f 1904d0c 8a63ffd 1904d0c f7e3ef0 1904d0c 8a63ffd 1904d0c dc8144e c300990 89ffe36 8bcb11e 89ffe36 69db70c 89ffe36 69db70c 89ffe36 0ac9498 8bcb11e 0ac9498 8bcb11e 7affc5d 6ee3759 f648357 ce01d7e 635ca44 cf4a9c9 7ec5586 ce01d7e f648357 a873688 ce01d7e 60b5cc8 f648357 c300990 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 |
import streamlit as st
import pandas as pd
import numpy as np
from bokeh.plotting import figure
from bokeh.models import ColumnDataSource, DataTable, TableColumn, CustomJS, Select, Button, HoverTool, LinearColorMapper, ColorBar, FuncTickFormatter, FixedTicker
from bokeh.layouts import column
from bokeh.palettes import Reds9, Blues9, Oranges9, Purples9, Greys9, BuGn9, Greens9, RdYlGn11, linear_palette
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE, trustworthiness
from sklearn.metrics import pairwise_distances
from sklearn.preprocessing import MinMaxScaler
from sklearn.pipeline import Pipeline
from sklearn.base import BaseEstimator, TransformerMixin
import io
import ot
from sklearn.linear_model import LinearRegression
from scipy.stats import binned_statistic_2d
import json
import itertools
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import zipfile
import tempfile
class RelativeScaler(BaseEstimator, TransformerMixin):
"""
Escala la primera columna al rango [-1, 1] y ajusta las siguientes columnas
manteniendo la proporción relativa respecto a la primera.
"""
def fit(self, X, y=None):
X = np.asarray(X)
self.pc1_min_ = X[:, 0].min()
self.pc1_max_ = X[:, 0].max()
self.scaling_factor_ = (self.pc1_max_ - self.pc1_min_) / 2
return self
def transform(self, X):
X = np.asarray(X)
pc1 = X[:, 0]
pc1_scaled = 2 * (pc1 - self.pc1_min_) / (self.pc1_max_ - self.pc1_min_) - 1
transformed = [pc1_scaled.reshape(-1, 1)]
for i in range(1, X.shape[1]):
scaled_i = X[:, i] / self.scaling_factor_
transformed.append(scaled_i.reshape(-1, 1))
return np.hstack(transformed)
N_COMPONENTS = 3
TSNE_NEIGHBOURS = 150
# WEIGHT_FACTOR = 0.05
TOOLTIPS = """
<div>
<div>
<img src="@img{safe}" style="width:128px; height:auto; float: left; margin: 0px 15px 15px 0px;" alt="@img" border="2"></img>
</div>
<div>
<span style="font-size: 17px; font-weight: bold;">@label</span>
</div>
<div>
<span style="font-size: 14px;">X: @x, Y: @y</span>
</div>
</div>
"""
def config_style():
# st.set_page_config(layout="wide")
st.markdown("""
<style>
.main-title { font-size: 50px; color: #4CAF50; text-align: center; }
.sub-title { font-size: 30px; color: #555; }
.custom-text { font-size: 18px; line-height: 1.5; }
.bk-legend {
max-height: 200px;
overflow-y: auto;
}
</style>
""", unsafe_allow_html=True)
st.markdown('<h1 class="main-title">Merit Embeddings 🎒📃🏆</h1>', unsafe_allow_html=True)
def load_embeddings(model, version, embedding_prefix, weight_factor):
if model == "Donut":
df_real = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_secret_all_{weight_factor}embeddings.csv")
df_par = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{weight_factor}embeddings.csv")
df_line = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-line-degradation-seq_{weight_factor}embeddings.csv")
df_seq = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-seq_{weight_factor}embeddings.csv")
df_rot = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-rotation-degradation-seq_{weight_factor}embeddings.csv")
df_zoom = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-zoom-degradation-seq_{weight_factor}embeddings.csv")
df_render = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_es-render-seq_{weight_factor}embeddings.csv")
df_pretratrained = pd.read_csv(f"data/donut/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_IIT-CDIP_{weight_factor}embeddings.csv")
# Asignar etiquetas de versión
df_real["version"] = "real"
df_par["version"] = "synthetic"
df_line["version"] = "synthetic"
df_seq["version"] = "synthetic"
df_rot["version"] = "synthetic"
df_zoom["version"] = "synthetic"
df_render["version"] = "synthetic"
df_pretratrained["version"] = "pretrained"
# Asignar fuente (source)
df_par["source"] = "es-digital-paragraph-degradation-seq"
df_line["source"] = "es-digital-line-degradation-seq"
df_seq["source"] = "es-digital-seq"
df_rot["source"] = "es-digital-rotation-degradation-seq"
df_zoom["source"] = "es-digital-zoom-degradation-seq"
df_render["source"] = "es-render-seq"
df_pretratrained["source"] = "pretrained"
return {"real": df_real,
"synthetic": pd.concat([df_seq, df_line, df_par, df_rot, df_zoom, df_render], ignore_index=True),
"pretrained": df_pretratrained}
elif model == "Idefics2":
df_real = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_secret_britanico_{weight_factor}embeddings.csv")
df_par = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{weight_factor}embeddings.csv")
df_line = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-line-degradation-seq_{weight_factor}embeddings.csv")
df_seq = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-seq_{weight_factor}embeddings.csv")
df_rot = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-rotation-degradation-seq_{weight_factor}embeddings.csv")
df_zoom = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-zoom-degradation-seq_{weight_factor}embeddings.csv")
df_render = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-render-seq_{weight_factor}embeddings.csv")
# Cargar ambos subconjuntos pretrained y combinarlos
df_pretratrained_PDFA = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_PDFA_{weight_factor}embeddings.csv")
df_pretratrained_IDL = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_IDL_{weight_factor}embeddings.csv")
df_pretratrained = pd.concat([df_pretratrained_PDFA, df_pretratrained_IDL], ignore_index=True)
# Asignar etiquetas de versión
df_real["version"] = "real"
df_par["version"] = "synthetic"
df_line["version"] = "synthetic"
df_seq["version"] = "synthetic"
df_rot["version"] = "synthetic"
df_zoom["version"] = "synthetic"
df_render["version"] = "synthetic"
df_pretratrained["version"] = "pretrained"
# Asignar fuente (source)
df_par["source"] = "es-digital-paragraph-degradation-seq"
df_line["source"] = "es-digital-line-degradation-seq"
df_seq["source"] = "es-digital-seq"
df_rot["source"] = "es-digital-rotation-degradation-seq"
df_zoom["source"] = "es-digital-zoom-degradation-seq"
df_render["source"] = "es-render-seq"
df_pretratrained["source"] = "pretrained"
return {"real": df_real,
"synthetic": pd.concat([df_seq, df_line, df_par, df_rot, df_zoom, df_render], ignore_index=True),
"pretrained": df_pretratrained}
elif model == "Idefics2-patient":
df_real = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_secret_britanico_{weight_factor}embeddings.csv")
df_par = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{weight_factor}embeddings.csv")
df_line = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-line-degradation-seq_{weight_factor}embeddings.csv")
df_seq = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-seq_{weight_factor}embeddings.csv")
df_rot = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-rotation-degradation-seq_{weight_factor}embeddings.csv")
df_zoom = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-zoom-degradation-seq_{weight_factor}embeddings.csv")
df_render = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_es-render-seq_{weight_factor}embeddings.csv")
# Cargar ambos subconjuntos pretrained y combinarlos
df_pretratrained_PDFA = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_PDFA_{weight_factor}embeddings.csv")
df_pretratrained_IDL = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_IDL_{weight_factor}embeddings.csv")
df_pretratrained = pd.concat([df_pretratrained_PDFA, df_pretratrained_IDL], ignore_index=True)
# Asignar etiquetas de versión
df_real["version"] = "real"
df_par["version"] = "synthetic"
df_line["version"] = "synthetic"
df_seq["version"] = "synthetic"
df_rot["version"] = "synthetic"
df_zoom["version"] = "synthetic"
df_render["version"] = "synthetic"
df_pretratrained["version"] = "pretrained"
# Asignar fuente (source)
df_par["source"] = "es-digital-paragraph-degradation-seq"
df_line["source"] = "es-digital-line-degradation-seq"
df_seq["source"] = "es-digital-seq"
df_rot["source"] = "es-digital-rotation-degradation-seq"
df_zoom["source"] = "es-digital-zoom-degradation-seq"
df_render["source"] = "es-render-seq"
df_pretratrained["source"] = "pretrained"
return {"real": df_real,
"synthetic": pd.concat([df_seq, df_line, df_par, df_rot, df_zoom, df_render], ignore_index=True),
"pretrained": df_pretratrained}
elif model == "Paligemma":
df_real = pd.read_csv(f"data/paligemma/{version}/{embedding_prefix}/de_Rodrigo_merit_secret_all_{weight_factor}embeddings.csv")
df_par = pd.read_csv(f"data/paligemma/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{weight_factor}embeddings.csv")
df_line = pd.read_csv(f"data/paligemma/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-line-degradation-seq_{weight_factor}embeddings.csv")
df_seq = pd.read_csv(f"data/paligemma/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-seq_{weight_factor}embeddings.csv")
df_rot = pd.read_csv(f"data/paligemma/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-rotation-degradation-seq_{weight_factor}embeddings.csv")
df_zoom = pd.read_csv(f"data/paligemma/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-zoom-degradation-seq_{weight_factor}embeddings.csv")
df_render = pd.read_csv(f"data/paligemma/{version}/{embedding_prefix}/de_Rodrigo_merit_es-render-seq_{weight_factor}embeddings.csv")
# Cargar ambos subconjuntos pretrained y combinarlos
# TODO Pretrained de idefics2, se mantienen para evitar error, pero se debe meter los de paligemma
df_pretratrained_PDFA = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_PDFA_{weight_factor}embeddings.csv")
df_pretratrained_IDL = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_IDL_{weight_factor}embeddings.csv")
df_pretratrained = pd.concat([df_pretratrained_PDFA, df_pretratrained_IDL], ignore_index=True)
# Asignar etiquetas de versión
df_real["version"] = "real"
df_par["version"] = "synthetic"
df_line["version"] = "synthetic"
df_seq["version"] = "synthetic"
df_rot["version"] = "synthetic"
df_zoom["version"] = "synthetic"
df_render["version"] = "synthetic"
df_pretratrained["version"] = "pretrained"
# Asignar fuente (source)
df_par["source"] = "es-digital-paragraph-degradation-seq"
df_line["source"] = "es-digital-line-degradation-seq"
df_seq["source"] = "es-digital-seq"
df_rot["source"] = "es-digital-rotation-degradation-seq"
df_zoom["source"] = "es-digital-zoom-degradation-seq"
df_render["source"] = "es-render-seq"
df_pretratrained["source"] = "pretrained"
return {"real": df_real,
"synthetic": pd.concat([df_seq, df_line, df_par, df_rot, df_zoom, df_render], ignore_index=True),
"pretrained": df_pretratrained}
elif model == "Llava":
df_real = pd.read_csv(f"data/llava/{version}/{embedding_prefix}/de_Rodrigo_merit_secret_all_{weight_factor}embeddings.csv")
#TODO Embeddings de Paligemma se mantienen para evitar error
df_par = pd.read_csv(f"data/paligemma/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-paragraph-degradation-seq_{weight_factor}embeddings.csv")
df_line = pd.read_csv(f"data/paligemma/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-line-degradation-seq_{weight_factor}embeddings.csv")
df_seq = pd.read_csv(f"data/paligemma/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-seq_{weight_factor}embeddings.csv")
df_rot = pd.read_csv(f"data/paligemma/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-rotation-degradation-seq_{weight_factor}embeddings.csv")
df_zoom = pd.read_csv(f"data/paligemma/{version}/{embedding_prefix}/de_Rodrigo_merit_es-digital-zoom-degradation-seq_{weight_factor}embeddings.csv")
df_render = pd.read_csv(f"data/paligemma/{version}/{embedding_prefix}/de_Rodrigo_merit_es-render-seq_{weight_factor}embeddings.csv")
# Cargar ambos subconjuntos pretrained y combinarlos
# TODO Pretrained de idefics2, se mantienen para evitar error, pero se debe meter los de paligemma
df_pretratrained_PDFA = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_PDFA_{weight_factor}embeddings.csv")
df_pretratrained_IDL = pd.read_csv(f"data/idefics2/{version}/{embedding_prefix}/de_Rodrigo_merit_aux_IDL_{weight_factor}embeddings.csv")
df_pretratrained = pd.concat([df_pretratrained_PDFA, df_pretratrained_IDL], ignore_index=True)
# Asignar etiquetas de versión
df_real["version"] = "real"
df_par["version"] = "synthetic"
df_line["version"] = "synthetic"
df_seq["version"] = "synthetic"
df_rot["version"] = "synthetic"
df_zoom["version"] = "synthetic"
df_render["version"] = "synthetic"
df_pretratrained["version"] = "pretrained"
# Asignar fuente (source)
df_par["source"] = "es-digital-paragraph-degradation-seq"
df_line["source"] = "es-digital-line-degradation-seq"
df_seq["source"] = "es-digital-seq"
df_rot["source"] = "es-digital-rotation-degradation-seq"
df_zoom["source"] = "es-digital-zoom-degradation-seq"
df_render["source"] = "es-render-seq"
df_pretratrained["source"] = "pretrained"
return {"real": df_real,
"synthetic": pd.concat([df_seq, df_line, df_par, df_rot, df_zoom, df_render], ignore_index=True),
"pretrained": df_pretratrained}
else:
st.error("Modelo no reconocido")
return None
def split_versions(df_combined, reduced):
# Asignar las coordenadas si la reducción es 2D
if reduced.shape[1] == 2:
df_combined['x'] = reduced[:, 0]
df_combined['y'] = reduced[:, 1]
df_real = df_combined[df_combined["version"] == "real"].copy()
df_synth = df_combined[df_combined["version"] == "synthetic"].copy()
df_pretrained = df_combined[df_combined["version"] == "pretrained"].copy()
unique_real = sorted(df_real['label'].unique().tolist())
unique_synth = {}
for source in df_synth["source"].unique():
unique_synth[source] = sorted(df_synth[df_synth["source"] == source]['label'].unique().tolist())
unique_pretrained = sorted(df_pretrained['label'].unique().tolist())
df_dict = {"real": df_real, "synthetic": df_synth, "pretrained": df_pretrained}
unique_subsets = {"real": unique_real, "synthetic": unique_synth, "pretrained": unique_pretrained}
return df_dict, unique_subsets
def get_embedding_from_df(df):
# Retorna el embedding completo (4 dimensiones en este caso) guardado en la columna 'embedding'
if 'embedding' in df.columns:
return np.stack(df['embedding'].to_numpy())
elif 'x' in df.columns and 'y' in df.columns:
return df[['x', 'y']].values
else:
raise ValueError("No se encontró embedding o coordenadas x,y en el DataFrame.")
def compute_cluster_distance(synthetic_points, real_points, metric="wasserstein", bins=20):
if metric.lower() == "wasserstein":
n = synthetic_points.shape[0]
m = real_points.shape[0]
weights = np.ones(n) / n
weights_real = np.ones(m) / m
M = ot.dist(synthetic_points, real_points, metric='euclidean')
return ot.emd2(weights, weights_real, M)
elif metric.lower() == "euclidean":
center_syn = np.mean(synthetic_points, axis=0)
center_real = np.mean(real_points, axis=0)
return np.linalg.norm(center_syn - center_real)
elif metric.lower() == "kl":
# Para KL usamos histogramas multidimensionales con límites globales en cada dimensión
all_points = np.vstack([synthetic_points, real_points])
edges = [
np.linspace(np.min(all_points[:, i]), np.max(all_points[:, i]), bins+1)
for i in range(all_points.shape[1])
]
H_syn, _ = np.histogramdd(synthetic_points, bins=edges)
H_real, _ = np.histogramdd(real_points, bins=edges)
eps = 1e-10
P = H_syn + eps
Q = H_real + eps
P = P / P.sum()
Q = Q / Q.sum()
kl = np.sum(P * np.log(P / Q))
return kl
else:
raise ValueError("Métrica desconocida. Usa 'wasserstein', 'euclidean' o 'kl'.")
def compute_cluster_distances_synthetic_individual(synthetic_df: pd.DataFrame, df_real: pd.DataFrame, real_labels: list, metric="wasserstein", bins=20) -> pd.DataFrame:
distances = {}
groups = synthetic_df.groupby(['source', 'label'])
for (source, label), group in groups:
key = f"{label} ({source})"
data = get_embedding_from_df(group)
distances[key] = {}
for real_label in real_labels:
real_data = get_embedding_from_df(df_real[df_real['label'] == real_label])
d = compute_cluster_distance(data, real_data, metric=metric, bins=bins)
distances[key][real_label] = d
for source, group in synthetic_df.groupby('source'):
key = f"Global ({source})"
data = get_embedding_from_df(group)
distances[key] = {}
for real_label in real_labels:
real_data = get_embedding_from_df(df_real[df_real['label'] == real_label])
d = compute_cluster_distance(data, real_data, metric=metric, bins=bins)
distances[key][real_label] = d
return pd.DataFrame(distances).T
def compute_continuity(X, X_embedded, n_neighbors=5):
n = X.shape[0]
D_high = pairwise_distances(X, metric='euclidean')
D_low = pairwise_distances(X_embedded, metric='euclidean')
indices_high = np.argsort(D_high, axis=1)
indices_low = np.argsort(D_low, axis=1)
k_high = indices_high[:, 1:n_neighbors+1]
k_low = indices_low[:, 1:n_neighbors+1]
total = 0.0
for i in range(n):
set_high = set(k_high[i])
set_low = set(k_low[i])
missing = set_high - set_low
for j in missing:
rank = np.where(indices_low[i] == j)[0][0]
total += (rank - n_neighbors)
norm = 2.0 / (n * n_neighbors * (2*n - 3*n_neighbors - 1))
continuity_value = 1 - norm * total
return continuity_value
def create_table(df_distances):
df_table = df_distances.copy()
df_table.reset_index(inplace=True)
df_table.rename(columns={'index': 'Synthetic'}, inplace=True)
min_row = {"Synthetic": "Min."}
mean_row = {"Synthetic": "Mean"}
max_row = {"Synthetic": "Max."}
for col in df_table.columns:
if col != "Synthetic":
min_row[col] = df_table[col].min()
mean_row[col] = df_table[col].mean()
max_row[col] = df_table[col].max()
df_table = pd.concat([df_table, pd.DataFrame([min_row, mean_row, max_row])], ignore_index=True)
source_table = ColumnDataSource(df_table)
columns = [TableColumn(field='Synthetic', title='Synthetic')]
for col in df_table.columns:
if col != 'Synthetic':
columns.append(TableColumn(field=col, title=col))
total_height = 30 + len(df_table)*28
data_table = DataTable(source=source_table, columns=columns, sizing_mode='stretch_width', height=total_height)
return data_table, df_table, source_table
def create_figure(dfs, unique_subsets, color_maps, model_name):
# Se crea el plot para el embedding reducido (asumiendo que es 2D)
fig = figure(width=600, height=600, tools="wheel_zoom,pan,reset,save", active_scroll="wheel_zoom", tooltips=TOOLTIPS, title="")
fig.match_aspect = True
# Renderizar datos reales
real_renderers = add_dataset_to_fig(fig, dfs["real"], unique_subsets["real"],
marker="circle", color_mapping=color_maps["real"],
group_label="Real")
# Renderizar datos sintéticos (por fuente)
marker_mapping = {
"es-digital-paragraph-degradation-seq": "x",
"es-digital-line-degradation-seq": "cross",
"es-digital-seq": "triangle",
"es-digital-rotation-degradation-seq": "diamond",
"es-digital-zoom-degradation-seq": "asterisk",
"es-render-seq": "inverted_triangle"
}
synthetic_renderers = {}
synth_df = dfs["synthetic"]
for source in unique_subsets["synthetic"]:
df_source = synth_df[synth_df["source"] == source]
marker = marker_mapping.get(source, "square")
renderers = add_synthetic_dataset_to_fig(fig, df_source, unique_subsets["synthetic"][source],
marker=marker,
color_mapping=color_maps["synthetic"][source],
group_label=source)
synthetic_renderers.update(renderers)
# Agregar el subset pretrained (se puede usar un marcador distinto, por ejemplo, "triangle")
pretrained_renderers = add_dataset_to_fig(fig, dfs["pretrained"], unique_subsets["pretrained"],
marker="triangle", color_mapping=color_maps["pretrained"],
group_label="Pretrained")
fig.legend.location = "top_right"
fig.legend.click_policy = "hide"
show_legend = st.checkbox("Show Legend", value=False, key=f"legend_{model_name}")
fig.legend.visible = show_legend
return fig, real_renderers, synthetic_renderers, pretrained_renderers
def add_dataset_to_fig(fig, df, selected_labels, marker, color_mapping, group_label):
renderers = {}
for label in selected_labels:
subset = df[df['label'] == label]
if subset.empty:
continue
source = ColumnDataSource(data=dict(
x=subset['x'],
y=subset['y'],
label=subset['label'],
img=subset.get('img', "")
))
color = color_mapping[label]
legend_label = f"{label} ({group_label})"
if marker == "circle":
r = fig.circle('x', 'y', size=10, source=source,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "square":
r = fig.square('x', 'y', size=10, source=source,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "triangle":
r = fig.triangle('x', 'y', size=12, source=source,
fill_color=color, line_color=color,
legend_label=legend_label)
renderers[label + f" ({group_label})"] = r
return renderers
def add_synthetic_dataset_to_fig(fig, df, labels, marker, color_mapping, group_label):
renderers = {}
for label in labels:
subset = df[df['label'] == label]
if subset.empty:
continue
source_obj = ColumnDataSource(data=dict(
x=subset['x'],
y=subset['y'],
label=subset['label'],
img=subset.get('img', "")
))
color = color_mapping[label]
legend_label = group_label
if marker == "square":
r = fig.square('x', 'y', size=10, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "triangle":
r = fig.triangle('x', 'y', size=12, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "inverted_triangle":
r = fig.inverted_triangle('x', 'y', size=12, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "diamond":
r = fig.diamond('x', 'y', size=10, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "cross":
r = fig.cross('x', 'y', size=12, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "x":
r = fig.x('x', 'y', size=12, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
elif marker == "asterisk":
r = fig.asterisk('x', 'y', size=12, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
else:
r = fig.circle('x', 'y', size=10, source=source_obj,
fill_color=color, line_color=color,
legend_label=legend_label)
renderers[label + f" ({group_label})"] = r
return renderers
def get_color_maps(unique_subsets):
color_map = {}
num_real = len(unique_subsets["real"])
red_palette = Reds9[:num_real] if num_real <= 9 else (Reds9 * ((num_real // 9) + 1))[:num_real]
color_map["real"] = {label: red_palette[i] for i, label in enumerate(sorted(unique_subsets["real"]))}
color_map["synthetic"] = {}
for source, labels in unique_subsets["synthetic"].items():
if source == "es-digital-seq":
palette = Blues9[:len(labels)] if len(labels) <= 9 else (Blues9 * ((len(labels)//9)+1))[:len(labels)]
elif source == "es-digital-line-degradation-seq":
palette = Purples9[:len(labels)] if len(labels) <= 9 else (Purples9 * ((len(labels)//9)+1))[:len(labels)]
elif source == "es-digital-paragraph-degradation-seq":
palette = BuGn9[:len(labels)] if len(labels) <= 9 else (BuGn9 * ((len(labels)//9)+1))[:len(labels)]
elif source == "es-digital-rotation-degradation-seq":
palette = Greys9[:len(labels)] if len(labels) <= 9 else (Greys9 * ((len(labels)//9)+1))[:len(labels)]
elif source == "es-digital-zoom-degradation-seq":
palette = Oranges9[:len(labels)] if len(labels) <= 9 else (Oranges9 * ((len(labels)//9)+1))[:len(labels)]
elif source == "es-render-seq":
palette = Greens9[:len(labels)] if len(labels) <= 9 else (Greens9 * ((len(labels)//9)+1))[:len(labels)]
else:
palette = Blues9[:len(labels)] if len(labels) <= 9 else (Blues9 * ((len(labels)//9)+1))[:len(labels)]
color_map["synthetic"][source] = {label: palette[i] for i, label in enumerate(sorted(labels))}
# Asignar colores al subset pretrained usando, por ejemplo, la paleta Purples9
num_pretrained = len(unique_subsets["pretrained"])
purple_palette = Purples9[:num_pretrained] if num_pretrained <= 9 else (Purples9 * ((num_pretrained // 9) + 1))[:num_pretrained]
color_map["pretrained"] = {label: purple_palette[i] for i, label in enumerate(sorted(unique_subsets["pretrained"]))}
return color_map
def calculate_cluster_centers(df, labels):
centers = {}
for label in labels:
subset = df[df['label'] == label]
if not subset.empty and 'x' in subset.columns and 'y' in subset.columns:
centers[label] = (subset['x'].mean(), subset['y'].mean())
return centers
def compute_global_regression(df_combined, embedding_cols, tsne_params, df_f1, reduction_method="t-SNE", distance_metric="wasserstein"):
if reduction_method == "PCA":
reducer = Pipeline([
("pca", PCA(n_components=N_COMPONENTS)),
("rel_scaler", RelativeScaler())
])
else:
reducer = TSNE(n_components=2, random_state=42,
perplexity=tsne_params["perplexity"],
learning_rate=tsne_params["learning_rate"])
reduced = reducer.fit_transform(df_combined[embedding_cols].values)
# Guardamos el embedding completo (por ejemplo, 4 dimensiones en PCA)
df_combined['embedding'] = list(reduced)
# Si el embedding es 2D, asignamos x e y para visualización
if reduced.shape[1] == 2:
df_combined['x'] = reduced[:, 0]
df_combined['y'] = reduced[:, 1]
explained_variance = None
if reduction_method == "PCA":
explained_variance = reducer.named_steps["pca"].explained_variance_ratio_
trust = None
cont = None
if reduction_method == "t-SNE":
X = df_combined[embedding_cols].values
trust = trustworthiness(X, reduced, n_neighbors=TSNE_NEIGHBOURS)
cont = compute_continuity(X, reduced, n_neighbors=TSNE_NEIGHBOURS)
dfs_reduced, unique_subsets = split_versions(df_combined, reduced)
df_distances = compute_cluster_distances_synthetic_individual(
dfs_reduced["synthetic"],
dfs_reduced["real"],
unique_subsets["real"],
metric=distance_metric
)
global_distances = {}
for idx in df_distances.index:
if idx.startswith("Global"):
source = idx.split("(")[1].rstrip(")")
global_distances[source] = df_distances.loc[idx].values
all_x = []
all_y = []
for source in df_f1.columns:
if source in global_distances:
x_vals = global_distances[source]
y_vals = df_f1[source].values
all_x.extend(x_vals)
all_y.extend(y_vals)
all_x_arr = np.array(all_x).reshape(-1, 1)
all_y_arr = np.array(all_y)
model_global = LinearRegression().fit(all_x_arr, all_y_arr)
r2 = model_global.score(all_x_arr, all_y_arr)
slope = model_global.coef_[0]
intercept = model_global.intercept_
scatter_fig = figure(width=600, height=600, tools="pan,wheel_zoom,reset,save", y_range=(0, 1),
title="Scatter Plot: Distance vs F1")
source_colors = {
"es-digital-paragraph-degradation-seq": "blue",
"es-digital-line-degradation-seq": "green",
"es-digital-seq": "red",
"es-digital-zoom-degradation-seq": "orange",
"es-digital-rotation-degradation-seq": "purple",
"es-digital-rotation-zoom-degradation-seq": "brown",
"es-render-seq": "cyan"
}
for source in df_f1.columns:
if source in global_distances:
x_vals = global_distances[source]
y_vals = df_f1[source].values
data = {"x": x_vals, "y": y_vals, "Fuente": [source]*len(x_vals)}
cds = ColumnDataSource(data=data)
scatter_fig.circle('x', 'y', size=8, alpha=0.7, source=cds,
fill_color=source_colors.get(source, "gray"),
line_color=source_colors.get(source, "gray"),
legend_label=source)
scatter_fig.xaxis.axis_label = "Distance (Global, por Colegio)"
scatter_fig.yaxis.axis_label = "F1 Score"
scatter_fig.legend.location = "top_right"
hover_tool = HoverTool(tooltips=[("Distance", "@x"), ("F1", "@y"), ("Subset", "@Fuente")])
scatter_fig.add_tools(hover_tool)
# scatter_fig.match_aspect = True
x_line = np.linspace(all_x_arr.min(), all_x_arr.max(), 100)
y_line = model_global.predict(x_line.reshape(-1, 1))
scatter_fig.line(x_line, y_line, line_width=2, line_color="black", legend_label="Global Regression")
results = {
"R2": r2,
"slope": slope,
"intercept": intercept,
"scatter_fig": scatter_fig,
"dfs_reduced": dfs_reduced,
"unique_subsets": unique_subsets,
"df_distances": df_distances,
"explained_variance": explained_variance,
"trustworthiness": trust,
"continuity": cont
}
if reduction_method == "PCA":
results["pca_model"] = reducer # Agregamos el objeto PCA para usarlo luego en los plots
return results
# def get_color(color_entry):
# if isinstance(color_entry, dict):
# # Extrae el primer valor (o ajusta según convenga)
# return list(color_entry.values())[0]
# return color_entry
def optimize_tsne_params(df_combined, embedding_cols, df_f1, distance_metric):
perplexity_range = np.linspace(30, 50, 10)
learning_rate_range = np.linspace(200, 1000, 20)
best_R2 = -np.inf
best_params = None
total_steps = len(perplexity_range) * len(learning_rate_range)
step = 0
progress_text = st.empty()
for p in perplexity_range:
for lr in learning_rate_range:
step += 1
progress_text.text(f"Evaluating: Perplexity={p:.2f}, Learning Rate={lr:.2f} (Step {step}/{total_steps})")
tsne_params = {"perplexity": p, "learning_rate": lr}
result = compute_global_regression(df_combined, embedding_cols, tsne_params, df_f1, reduction_method="t-SNE", distance_metric=distance_metric)
r2_temp = result["R2"]
st.write(f"Parameters: Perplexity={p:.2f}, Learning Rate={lr:.2f} -> R²={r2_temp:.4f}")
if r2_temp > best_R2:
best_R2 = r2_temp
best_params = (p, lr)
progress_text.text("Optimization completed!")
return best_params, best_R2
def run_model(model_name):
version = st.selectbox("Select Model Version:", options=["vanilla", "finetuned_real"], key=f"version_{model_name}")
# Selector para el método de cómputo del embedding
embedding_computation = st.selectbox("¿Cómo se computa el embedding?", options=["averaged", "weighted"], key=f"embedding_method_{model_name}")
# Se asigna el prefijo correspondiente
if embedding_computation == "weighted":
selected_weight_factor = st.selectbox(
"Seleccione el Weight Factor",
options=[0.05, 0.1, 0.25, 0.5],
index=0, # índice 1 para que por defecto sea 0.05
key=f"weight_factor_{model_name}"
)
weight_factor = f"{selected_weight_factor}_"
else:
weight_factor = ""
embeddings = load_embeddings(model_name, version, embedding_computation, weight_factor)
if embeddings is None:
return
# Nuevo selector para incluir o excluir el dataset pretrained
include_pretrained = st.checkbox("Incluir dataset pretrained", value=False, key=f"legend_{model_name}_pretrained")
if not include_pretrained:
# Removemos la entrada pretrained del diccionario, si existe.
embeddings.pop("pretrained", None)
# Extraer columnas de embedding de los datos "real"
embedding_cols = [col for col in embeddings["real"].columns if col.startswith("dim_")]
# Concatenamos los datasets disponibles (ahora, sin pretrained si se deseleccionó)
df_combined = pd.concat(list(embeddings.values()), ignore_index=True)
try:
df_f1 = pd.read_csv("data/f1-donut.csv", sep=';', index_col=0)
except Exception as e:
st.error(f"Error loading f1-donut.csv: {e}")
return
st.markdown('<h6 class="sub-title">Select Dimensionality Reduction Method</h6>', unsafe_allow_html=True)
reduction_method = st.selectbox("", options=["PCA", "t-SNE"], key=f"reduction_{model_name}")
distance_metric = st.selectbox("Select Distance Metric:",
options=["Euclidean", "Wasserstein", "KL"],
key=f"distance_metric_{model_name}")
tsne_params = {}
if reduction_method == "t-SNE":
if st.button("Optimize TSNE parameters", key=f"optimize_tsne_{model_name}"):
st.info("Running optimization, this can take a while...")
best_params, best_R2 = optimize_tsne_params(df_combined, embedding_cols, df_f1, distance_metric.lower())
st.success(f"Best parameters: Perplexity = {best_params[0]:.2f}, Learning Rate = {best_params[1]:.2f} with R² = {best_R2:.4f}")
tsne_params = {"perplexity": best_params[0], "learning_rate": best_params[1]}
else:
perplexity_val = st.number_input(
"Perplexity",
min_value=5.0,
max_value=50.0,
value=30.0,
step=1.0,
format="%.2f",
key=f"perplexity_{model_name}"
)
learning_rate_val = st.number_input(
"Learning Rate",
min_value=10.0,
max_value=1000.0,
value=200.0,
step=10.0,
format="%.2f",
key=f"learning_rate_{model_name}"
)
tsne_params = {"perplexity": perplexity_val, "learning_rate": learning_rate_val}
result = compute_global_regression(df_combined, embedding_cols, tsne_params, df_f1, reduction_method=reduction_method, distance_metric=distance_metric.lower())
reg_metrics = pd.DataFrame({
"Slope": [result["slope"]],
"Intercept": [result["intercept"]],
"R2": [result["R2"]]
})
st.table(reg_metrics)
if reduction_method == "PCA" and result["explained_variance"] is not None:
st.subheader("Explained Variance Ratio")
component_names = [f"PC{i+1}" for i in range(len(result["explained_variance"]))]
variance_df = pd.DataFrame({
"Component": component_names,
"Explained Variance": result["explained_variance"]
})
st.table(variance_df)
elif reduction_method == "t-SNE":
st.subheader("t-SNE Quality Metrics")
st.write(f"Trustworthiness: {result['trustworthiness']:.4f}")
st.write(f"Continuity: {result['continuity']:.4f}")
# # Mostrar los plots de loadings si se usó PCA (para el conjunto combinado)
# if reduction_method == "PCA" and result.get("pca_model") is not None:
# # pca_model = result["pca_model"]
# pca_model = result["pca_model"].named_steps["pca"]
# components = pca_model.components_ # Shape: (n_components, n_features)
# st.subheader("Pesos de las Componentes Principales (Loadings) - Conjunto Combinado")
# for i, comp in enumerate(components):
# source = ColumnDataSource(data=dict(
# dimensions=embedding_cols,
# weight=comp
# ))
# p = figure(x_range=embedding_cols, title=f"Componente Principal {i+1}",
# plot_height=400, plot_width=600,
# toolbar_location="above",
# tools="pan,wheel_zoom,reset,save,hover",
# active_scroll="wheel_zoom")
# # Establecer fondo blanco
# p.background_fill_color = "white"
# # Mostrar solo grilla horizontal
# p.xgrid.grid_line_color = None
# p.ygrid.grid_line_color = "gray"
# p.vbar(x='dimensions', top='weight', width=0.8, source=source)
# p.xaxis.major_label_text_font_size = '0pt'
# hover = HoverTool(tooltips=[("Dimensión", "@dimensions"), ("Peso", "@weight")])
# p.add_tools(hover)
# p.xaxis.axis_label = "Dimensiones originales"
# p.yaxis.axis_label = "Peso"
# st.bokeh_chart(p)
data_table, df_table, source_table = create_table(result["df_distances"])
real_subset_names = list(df_table.columns[1:])
real_select = Select(title="", value=real_subset_names[0], options=real_subset_names)
reset_button = Button(label="Reset Colors", button_type="primary")
line_source = ColumnDataSource(data={'x': [], 'y': []})
# if (reduction_method == "t-SNE" and N_COMPONENTS == 2) or (reduction_method == "PCA" and N_COMPONENTS == 2):
# fig, real_renderers, synthetic_renderers, pretrained_renderers = create_figure(
# result["dfs_reduced"],
# result["unique_subsets"],
# get_color_maps(result["unique_subsets"]),
# model_name
# )
# fig.line('x', 'y', source=line_source, line_width=2, line_color='black')
# centers_real = calculate_cluster_centers(result["dfs_reduced"]["real"], result["unique_subsets"]["real"])
# real_centers_js = {k: [v[0], v[1]] for k, v in centers_real.items()}
# synthetic_centers = {}
# synth_labels = sorted(result["dfs_reduced"]["synthetic"]['label'].unique().tolist())
# for label in synth_labels:
# subset = result["dfs_reduced"]["synthetic"][result["dfs_reduced"]["synthetic"]['label'] == label]
# if 'x' in subset.columns and 'y' in subset.columns:
# synthetic_centers[label] = [subset['x'].mean(), subset['y'].mean()]
# callback = CustomJS(args=dict(source=source_table, line_source=line_source,
# synthetic_centers=synthetic_centers,
# real_centers=real_centers_js,
# real_select=real_select),
# code="""
# var selected = source.selected.indices;
# if (selected.length > 0) {
# var idx = selected[0];
# var data = source.data;
# var synth_label = data['Synthetic'][idx];
# var real_label = real_select.value;
# var syn_coords = synthetic_centers[synth_label];
# var real_coords = real_centers[real_label];
# line_source.data = {'x': [syn_coords[0], real_coords[0]], 'y': [syn_coords[1], real_coords[1]]};
# line_source.change.emit();
# } else {
# line_source.data = {'x': [], 'y': []};
# line_source.change.emit();
# }
# """)
# source_table.selected.js_on_change('indices', callback)
# real_select.js_on_change('value', callback)
# reset_callback = CustomJS(args=dict(line_source=line_source),
# code="""
# line_source.data = {'x': [], 'y': []};
# line_source.change.emit();
# """)
# reset_button.js_on_event("button_click", reset_callback)
# layout = column(fig, result["scatter_fig"], column(real_select, reset_button, data_table))
# else:
# layout = column(result["scatter_fig"], column(real_select, reset_button, data_table))
# st.bokeh_chart(layout, use_container_width=True)
buffer = io.BytesIO()
df_table.to_excel(buffer, index=False)
buffer.seek(0)
st.download_button(
label="Export Table",
data=buffer,
file_name=f"cluster_distances_{model_name}.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
key=f"download_button_excel_{model_name}"
)
if reduction_method == "PCA":
st.markdown("## PCA - Solo Muestras Reales")
# -------------------------------------------------------------------------
# 1. PCA sobre las muestras reales
df_real_only = embeddings["real"].copy()
reducer_real = Pipeline([
("pca", PCA(n_components=N_COMPONENTS)),
("rel_scaler", RelativeScaler())
])
reduced_real = reducer_real.fit_transform(df_real_only[embedding_cols].values)
# Agregar columnas PC1, PC2, … a df_real_only
for i in range(reduced_real.shape[1]):
df_real_only[f'PC{i+1}'] = reduced_real[:, i]
explained_variance_real = reducer_real.named_steps["pca"].explained_variance_ratio_
unique_labels_real = sorted(df_real_only['label'].unique().tolist())
# Mapeo de colores para las muestras reales usando la paleta Reds9
num_labels = len(unique_labels_real)
if num_labels <= 9:
red_palette = Reds9[:num_labels]
else:
red_palette = (Reds9 * ((num_labels // 9) + 1))[:num_labels]
real_color_mapping = {label: red_palette[i] for i, label in enumerate(unique_labels_real)}
# Mostrar tabla de Explained Variance Ratio
st.subheader("PCA - Real: Explained Variance Ratio")
component_names_real = [f"PC{i+1}" for i in range(len(explained_variance_real))]
variance_df_real = pd.DataFrame({
"Component": component_names_real,
"Explained Variance": explained_variance_real
})
st.table(variance_df_real)
# Mostrar los plots de loadings para cada componente
# st.subheader("PCA - Real: Component Loadings")
# st.markdown("### Pesos de las Componentes Principales (Loadings) - Conjunto Combinado")
# for i, comp in enumerate(reducer_real.named_steps["pca"].components_):
# source = ColumnDataSource(data=dict(
# dimensions=embedding_cols,
# weight=comp
# ))
# p = figure(
# x_range=embedding_cols,
# title=f"Componente Principal {i+1}",
# plot_height=400,
# plot_width=600,
# toolbar_location="above",
# tools="pan,wheel_zoom,reset,save,hover",
# active_scroll="wheel_zoom"
# )
# p.background_fill_color = "white"
# p.xgrid.grid_line_color = None
# p.ygrid.grid_line_color = "gray"
# p.vbar(x='dimensions', top='weight', width=0.8, source=source,
# fill_color="#2b83ba", line_color="#2b83ba")
# p.xaxis.axis_label = "Dimensiones Originales"
# p.xaxis.major_label_text_font_size = '0pt'
# hover = p.select_one(HoverTool)
# hover.tooltips = [("Dimensión", "@dimensions"), ("Peso", "@weight")]
# st.bokeh_chart(p)
# -------------------------------------------------------------------------
# 2. Proyección de todos los subconjuntos usando los loadings de df_real (para PC completos)
# Se proyectan real, synthetic y pretrained (si existen) y se agregan todas las PC's.
df_all = {}
# Real
df_real_proj = embeddings["real"].copy()
# proj_real = reducer_real.named_steps["pca"].transform(df_real_proj[embedding_cols].values)
proj_real = reducer_real.transform(df_real_proj[embedding_cols].values)
for i in range(proj_real.shape[1]):
df_real_proj[f'PC{i+1}'] = proj_real[:, i]
df_all["real"] = df_real_proj
# Synthetic
if "synthetic" in embeddings:
df_synth_proj = embeddings["synthetic"].copy()
proj_synth = reducer_real.transform(df_synth_proj[embedding_cols].values)
for i in range(proj_synth.shape[1]):
df_synth_proj[f'PC{i+1}'] = proj_synth[:, i]
df_all["synthetic"] = df_synth_proj
# Pretrained
if "pretrained" in embeddings:
df_pretr_proj = embeddings["pretrained"].copy()
proj_pretr = reducer_real.transform(df_pretr_proj[embedding_cols].values)
for i in range(proj_pretr.shape[1]):
df_pretr_proj[f'PC{i+1}'] = proj_pretr[:, i]
df_all["pretrained"] = df_pretr_proj
# Para el plot global usaremos PC1 y PC2 (se asignan a 'x' y 'y')
for key in df_all:
df_all[key]["x"] = df_all[key]["PC1"]
df_all[key]["y"] = df_all[key]["PC2"]
# Construir los subconjuntos únicos para agrupar:
unique_subsets = {}
unique_subsets["real"] = sorted(df_all["real"]['label'].unique().tolist())
if "synthetic" in df_all:
unique_synth = {}
for source in df_all["synthetic"]["source"].unique():
unique_synth[source] = sorted(df_all["synthetic"][df_all["synthetic"]["source"] == source]['label'].unique().tolist())
unique_subsets["synthetic"] = unique_synth
else:
unique_subsets["synthetic"] = {}
if "pretrained" in df_all:
unique_subsets["pretrained"] = sorted(df_all["pretrained"]['label'].unique().tolist())
else:
unique_subsets["pretrained"] = []
# Obtener mapeo de colores para cada subconjunto (función definida externamente)
color_maps = get_color_maps(unique_subsets)
# Mapeo de marcadores para synthetic (por source)
marker_mapping = {
"es-digital-paragraph-degradation-seq": "x",
"es-digital-line-degradation-seq": "cross",
"es-digital-seq": "triangle",
"es-digital-rotation-degradation-seq": "diamond",
"es-digital-zoom-degradation-seq": "asterisk",
"es-render-seq": "inverted_triangle"
}
# Plot global: se muestran real, synthetic y pretrained (según checkbox)
st.subheader("PCA - Todos los subconjuntos proyectados (PC1 vs PC2)")
fig_all = figure(
title="PCA - Todos los subconjuntos proyectados",
plot_width=600,
plot_height=600,
tools="pan,wheel_zoom,reset,save",
active_scroll="wheel_zoom",
background_fill_color="white",
tooltips=TOOLTIPS
)
fig_all.xgrid.grid_line_color = None
fig_all.ygrid.grid_line_color = "gray"
# Plotear las muestras reales, agrupadas por label
for label in unique_subsets["real"]:
subset = df_all["real"][df_all["real"]['label'] == label]
source = ColumnDataSource(data={
'x': subset['x'],
'y': subset['y'],
'label': subset['label'],
'img': subset['img']
})
fig_all.circle('x', 'y', size=10,
fill_color=color_maps["real"][label],
line_color=color_maps["real"][label],
legend_label=f"Real: {label}",
source=source)
show_real_only = st.checkbox("Show only real samples", value=True, key=f"show_real_only_{model_name}")
if not show_real_only:
# Agregar synthetic
if unique_subsets["synthetic"]:
for source_name, labels in unique_subsets["synthetic"].items():
df_source = df_all["synthetic"][df_all["synthetic"]["source"] == source_name]
marker = marker_mapping.get(source_name, "square")
# Se usa el mapeo de colores para synthetic
color_val = color_maps["synthetic"][source_name]
renderers = add_synthetic_dataset_to_fig(
fig_all, df_source, labels,
marker=marker,
color_mapping=color_val,
group_label=source_name
)
# Agregar pretrained
if unique_subsets["pretrained"]:
for label in unique_subsets["pretrained"]:
subset = df_all["pretrained"][df_all["pretrained"]['label'] == label]
source = ColumnDataSource(data={
'x': subset['x'],
'y': subset['y'],
'label': subset['label'],
'img': subset['img']
})
fig_all.triangle('x', 'y', size=10,
fill_color=color_maps["pretrained"][label],
line_color=color_maps["pretrained"][label],
legend_label=f"Pretrained: {label}",
source=source)
show_legend_global = st.checkbox("Show Legend", value=False, key=f"legend_global_{model_name}")
fig_all.legend.visible = show_legend_global
fig_all.legend.location = "top_right"
fig_all.match_aspect = True
st.bokeh_chart(fig_all)
# Calcular centroide y radio (usando solo las muestras reales)
center_x = df_all["real"]['x'].mean()
center_y = df_all["real"]['y'].mean()
distances = np.sqrt((df_all["real"]['x'] - center_x)**2 + (df_all["real"]['y'] - center_y)**2)
radius = distances.max()
# Dibujar el centroide y la circunferencia
centroid_glyph = fig_all.circle(
x=center_x, y=center_y, size=15,
fill_color="white", line_color="black",
legend_label="Centroide",
name="centroid"
)
circumference_glyph = fig_all.circle(
x=center_x, y=center_y, radius=radius,
fill_color=None, line_color="black",
line_dash="dashed",
legend_label="Circunferencia",
name="circumference"
)
# Ajustar ejes y tooltips
fig_all.xaxis.axis_label = "PC1"
fig_all.yaxis.axis_label = "PC2"
hover_all = fig_all.select_one(HoverTool)
hover_all.renderers = [r for r in fig_all.renderers if r.name not in ["centroid", "circumference"]]
st.write(f"El radio de la circunferencia (calculado a partir de las muestras reales) es: {radius:.4f}")
# -------------------------------------------------------------------------
# Calcular el rango global: recorrer todas las proyecciones de todos los subconjuntos
all_vals = []
for key in df_all:
for comp in [f'PC{i+1}' for i in range(N_COMPONENTS)]:
all_vals.append(df_all[key][comp])
all_vals = pd.concat(all_vals)
# Tomar el máximo valor absoluto de todas las proyecciones
max_val = all_vals.abs().max()
global_range = (-max_val, max_val)
# 3. Scatter plots para cada combinación (vistas planta, alzado y perfil)
st.subheader("Scatter Plots: Vistas de Componentes (Combinaciones)")
pairs = list(itertools.combinations(range(N_COMPONENTS), 2))
for (i, j) in pairs:
x_comp = f'PC{i+1}'
y_comp = f'PC{j+1}'
st.markdown(f"### Scatter Plot: {x_comp} vs {y_comp}")
# Usar el rango global para ambos ejes
p = figure(
title=f"{x_comp} vs {y_comp}",
plot_width=700,
plot_height=700,
x_range=global_range,
y_range=global_range,
tools="pan,wheel_zoom,reset,save,hover",
active_scroll="wheel_zoom",
background_fill_color="white",
tooltips=TOOLTIPS
)
# Etiquetas de ejes
p.xaxis.axis_label = x_comp
p.yaxis.axis_label = y_comp
# Muestras reales: se usan directamente los valores de PC{i+1} y PC{j+1}
for label in unique_subsets["real"]:
subset = df_all["real"][df_all["real"]['label'] == label]
source = ColumnDataSource(data={
'x': subset[x_comp],
'y': subset[y_comp],
'label': subset['label'],
'img': subset['img']
})
p.circle('x', 'y', size=10,
fill_color=color_maps["real"][label],
line_color=color_maps["real"][label],
legend_label=f"Real: {label}",
source=source)
# Selector para incluir o no synthetic y pretrained en este gráfico
show_pair_only_real = st.checkbox("Show only real samples", value=True, key=f"pair_show_real_{i}_{j}_{model_name}")
if not show_pair_only_real:
# Synthetic
if "synthetic" in df_all:
for source_name, labels in unique_subsets["synthetic"].items():
# Obtener las filas de synthetic para ese source y asignar el rango adecuado
df_source = df_all["synthetic"][df_all["synthetic"]["source"] == source_name].copy()
df_source["x"] = df_source[x_comp]
df_source["y"] = df_source[y_comp]
marker = marker_mapping.get(source_name, "square")
renderers = add_synthetic_dataset_to_fig(
p, df_source, labels,
marker=marker,
color_mapping=color_maps["synthetic"][source_name],
group_label=source_name
)
# Pretrained
if "pretrained" in df_all:
for label in unique_subsets["pretrained"]:
subset = df_all["pretrained"][df_all["pretrained"]['label'] == label]
source = ColumnDataSource(data={
'x': subset[x_comp],
'y': subset[y_comp],
'label': subset['label'],
'img': subset['img']
})
p.triangle('x', 'y', size=10,
fill_color=color_maps["pretrained"][label],
line_color=color_maps["pretrained"][label],
legend_label=f"Pretrained: {label}",
source=source)
show_legend_pair = st.checkbox("Show Legend", value=False, key=f"legend_pair_{i}_{j}_{model_name}")
p.legend.visible = show_legend_pair
st.bokeh_chart(p)
# -------------------------------------------------------------------------
# 4. Cálculo de distancias y scatter plot: Distance vs F1 (usando PC1 y PC2 globales)
# Genera una paleta de 256 colores basada en RdYlGn11
cmap = plt.get_cmap("RdYlGn")
red_green_palette = [mcolors.rgb2hex(cmap(i)) for i in np.linspace(0, 1, 256)]
# real_labels_new = sorted(df_all["real"]['label'].unique().tolist())
# df_distances_new = compute_cluster_distances_synthetic_individual(
# df_all["synthetic"],
# df_all["real"],
# real_labels_new,
# metric="wasserstein", # O la métrica que prefieras
# bins=20
# )
# global_distances_new = {}
# for idx in df_distances_new.index:
# if idx.startswith("Global"):
# source_name = idx.split("(")[1].rstrip(")")
# global_distances_new[source_name] = df_distances_new.loc[idx].values
# all_x_new = []
# all_y_new = []
# for source in df_f1.columns:
# if source in global_distances_new:
# x_vals = global_distances_new[source]
# y_vals = df_f1[source].values
# all_x_new.extend(x_vals)
# all_y_new.extend(y_vals)
# all_x_arr_new = np.array(all_x_new).reshape(-1, 1)
# all_y_arr_new = np.array(all_y_new)
# model_global_new = LinearRegression().fit(all_x_arr_new, all_y_arr_new)
# r2_new = model_global_new.score(all_x_arr_new, all_y_arr_new)
# slope_new = model_global_new.coef_[0]
# intercept_new = model_global_new.intercept_
# scatter_fig_new = figure(
# width=600,
# height=600,
# tools="pan,wheel_zoom,reset,save,hover",
# active_scroll="wheel_zoom",
# title="Scatter Plot: Distance vs F1 (Nueva PCA)",
# background_fill_color="white",
# y_range=(0, 1)
# )
# scatter_fig_new.xgrid.grid_line_color = None
# scatter_fig_new.ygrid.grid_line_color = "gray"
# scatter_fig_new.match_aspect = True
# source_colors = {
# "es-digital-paragraph-degradation-seq": "blue",
# "es-digital-line-degradation-seq": "green",
# "es-digital-seq": "red",
# "es-digital-zoom-degradation-seq": "orange",
# "es-digital-rotation-degradation-seq": "purple",
# "es-digital-rotation-zoom-degradation-seq": "brown",
# "es-render-seq": "cyan"
# }
# for source in df_f1.columns:
# if source in global_distances_new:
# x_vals = global_distances_new[source]
# y_vals = df_f1[source].values
# data = {"x": x_vals, "y": y_vals, "Fuente": [source]*len(x_vals)}
# cds = ColumnDataSource(data=data)
# scatter_fig_new.circle(
# 'x', 'y', size=8, alpha=0.7, source=cds,
# fill_color=source_colors.get(source, "gray"),
# line_color=source_colors.get(source, "gray"),
# legend_label=source
# )
# scatter_fig_new.xaxis.axis_label = "Distance (Global, por Colegio) - Nueva PCA"
# scatter_fig_new.yaxis.axis_label = "F1 Score"
# scatter_fig_new.legend.location = "top_right"
# hover_tool_new = scatter_fig_new.select_one(HoverTool)
# hover_tool_new.tooltips = [("Distance", "@x"), ("F1", "@y"), ("Subset", "@Fuente")]
# x_line_new = np.linspace(all_x_arr_new.min(), all_x_arr_new.max(), 100)
# y_line_new = model_global_new.predict(x_line_new.reshape(-1,1))
# scatter_fig_new.line(x_line_new, y_line_new, line_width=2, line_color="black", legend_label="Global Regression")
# st.bokeh_chart(scatter_fig_new)
# st.write(f"Regresión global (Nueva PCA): R² = {r2_new:.4f}, Slope = {slope_new:.4f}, Intercept = {intercept_new:.4f}")
# -------------------------------------------------------------------------
# 5. BLOQUE: Heatmap de Características
st.markdown("## Heatmap de Características")
try:
df_heat = pd.read_csv(f"data/heatmaps_{model_name.lower()}.csv")
except Exception as e:
st.error(f"Error al cargar heatmaps.csv: {e}")
df_heat = None
if df_heat is not None:
if 'img' not in df_all["real"].columns:
st.error("La columna 'img' no se encuentra en las muestras reales para hacer el merge con heatmaps.csv.")
else:
# Crear columna 'name' en las muestras reales (si aún no existe)
df_all["real"]["name"] = df_all["real"]["img"].apply(
lambda x: x.split("/")[-1].replace(".png", "") if isinstance(x, str) else x
)
# Merge de las posiciones reales con el CSV de heatmaps (se usa el merge base)
df_heatmap_base = pd.merge(df_all["real"], df_heat, on="name", how="inner")
# Extraer opciones de feature (excluyendo 'name')
feature_options = [col for col in df_heat.columns if col != "name"]
selected_feature = st.selectbox("Select heatmap feature:",
options=feature_options, key=f"heatmap_{model_name}")
select_extra_dataset_hm = st.selectbox("Select a dataset:",
options=model_options_with_default, key=f"heatmap_extra_dataset_{model_name}")
# Definir un rango fijo para los ejes (por ejemplo, de -1 a 1) y rejilla
x_min, x_max = -1, 1
y_min, y_max = -1, 1
grid_size = 50
x_bins = np.linspace(x_min, x_max, grid_size + 1)
y_bins = np.linspace(y_min, y_max, grid_size + 1)
# Listas para almacenar las figuras de heatmap y sus nombres
heatmap_figures = []
heatmap_names = []
# Generar heatmaps para cada combinación de componentes
pairs = list(itertools.combinations(range(N_COMPONENTS), 2))
for (i, j) in pairs:
x_comp = f'PC{i+1}'
y_comp = f'PC{j+1}'
st.markdown(f"### Heatmap: {x_comp} vs {y_comp}")
# Crear un DataFrame de heatmap para la combinación actual a partir del merge base
df_heatmap = df_heatmap_base.copy()
df_heatmap["x"] = df_heatmap[x_comp]
df_heatmap["y"] = df_heatmap[y_comp]
# Si la feature seleccionada no es numérica, convertir a códigos y guardar la correspondencia
cat_mapping = None
if df_heatmap[selected_feature].dtype == bool or not pd.api.types.is_numeric_dtype(df_heatmap[selected_feature]):
cat = df_heatmap[selected_feature].astype('category')
cat_mapping = list(cat.cat.categories)
df_heatmap[selected_feature] = cat.cat.codes
# Calcular la estadística binned (por ejemplo, la media) en la rejilla
try:
heat_stat, x_edges, y_edges, binnumber = binned_statistic_2d(
df_heatmap['x'], df_heatmap['y'], df_heatmap[selected_feature],
statistic='mean', bins=[x_bins, y_bins]
)
except TypeError:
cat = df_heatmap[selected_feature].astype('category')
cat_mapping = list(cat.cat.categories)
df_heatmap[selected_feature] = cat.cat.codes
heat_stat, x_edges, y_edges, binnumber = binned_statistic_2d(
df_heatmap['x'], df_heatmap['y'], df_heatmap[selected_feature],
statistic='mean', bins=[x_bins, y_bins]
)
# Transponer la matriz para alinear correctamente los ejes
# Transponer y limpiar valores inválidos (NaN, inf, -inf)
heatmap_data = heat_stat.T
# heatmap_data = np.nan_to_num(heat_stat.T, nan=0.0, posinf=0.0, neginf=0.0)
# Definir el color mapper
if selected_feature in model_options:
color_mapper = LinearColorMapper(
palette=red_green_palette,
low=0,
high=1,
nan_color='rgba(0, 0, 0, 0)'
)
else:
color_mapper = LinearColorMapper(
palette="Viridis256",
low=np.nanmin(heatmap_data),
high=np.nanmax(heatmap_data),
nan_color='rgba(0, 0, 0, 0)'
)
# Crear la figura para el heatmap con la misma escala para x e y
heatmap_fig = figure(title=f"Heatmap de '{selected_feature}' ({x_comp} vs {y_comp})",
x_range=(x_min, x_max), y_range=(y_min, y_max),
width=600, height=600,
tools="pan,wheel_zoom,reset,save", active_scroll="wheel_zoom", tooltips=TOOLTIPS,
sizing_mode="fixed")
heatmap_fig.match_aspect = True
# Asignar etiquetas a los ejes
heatmap_fig.xaxis.axis_label = x_comp
heatmap_fig.yaxis.axis_label = y_comp
heatmap_fig.background_fill_color = "white"
heatmap_fig.border_fill_color = "white"
# Dibujar la imagen del heatmap
heatmap_fig.image(image=[heatmap_data], x=x_min, y=y_min,
dw=x_max - x_min, dh=y_max - y_min,
color_mapper=color_mapper)
# Agregar la barra de color
color_bar = ColorBar(color_mapper=color_mapper, location=(0, 0))
if cat_mapping is not None:
ticks = list(range(len(cat_mapping)))
color_bar.ticker = FixedTicker(ticks=ticks)
categories_json = json.dumps(cat_mapping)
color_bar.formatter = FuncTickFormatter(code=f"""
var categories = {categories_json};
var index = Math.round(tick);
if(index >= 0 && index < categories.length) {{
return categories[index];
}} else {{
return "";
}}
""")
heatmap_fig.add_layout(color_bar, 'right')
# Agregar renderer invisible para tooltips
source_points = ColumnDataSource(data={
'x': df_heatmap['x'],
'y': df_heatmap['y'],
'img': df_heatmap['img'],
'label': df_heatmap['name']
})
invisible_renderer = heatmap_fig.circle('x', 'y', size=10, source=source_points, fill_alpha=0, line_alpha=0.5)
# school = "patria"
if select_extra_dataset_hm != "-":
df_extra = df_all["synthetic"][df_all["synthetic"]["source"] == select_extra_dataset_hm].copy()
df_extra["x"] = df_extra[x_comp]
df_extra["y"] = df_extra[y_comp]
if 'name' not in df_extra.columns:
df_extra["name"] = df_extra["img"].apply(lambda x: x.split("/")[-1].replace(".png", "") if isinstance(x, str) else x)
# mask = df_extra["name"].str.contains(school, case=False, na=False)
# df_extra = df_extra[mask].copy()
source_extra_points = ColumnDataSource(data={
'x': df_extra['x'],
'y': df_extra['y'],
'img': df_extra['img'],
'label': df_extra['name']
})
extra_renderer = heatmap_fig.circle('x', 'y', size=5, source=source_extra_points, fill_alpha=0, line_alpha=0.5, color="purple")
hover_tool_points = HoverTool(renderers=[invisible_renderer], tooltips=TOOLTIPS)
heatmap_fig.add_tools(hover_tool_points)
# Mostrar el heatmap en la app
st.bokeh_chart(heatmap_fig)
# Botón para descargar df_all (Embeddings in PCA Space)
if st.button("Download Embeddings in PCA Space", key=f"click_download_pca_coordinates_{model_name}"):
# Crear un nuevo diccionario para almacenar solo las columnas que comienzan con "PC" o "name"
df_all_pca = {}
for key, df in df_all.items():
# Si es el conjunto sintético, separamos cada subset según la columna "source"
if key == "synthetic":
for source in df["source"].unique():
df_subset = df[df["source"] == source].copy()
# Asegurarse de que exista la columna "name" (como se hace en el snippet de heatmaps)
if "img" in df_subset.columns and "name" not in df_subset.columns:
df_subset["name"] = df_subset["img"].apply(lambda x: x.split("/")[-1].replace(".png", "") if isinstance(x, str) else x)
pca_cols = [col for col in df_subset.columns if col.startswith("PC") or col == "name"]
# Usar un nombre de hoja que identifique que es sintético y el source correspondiente
sheet_name = f"synthetic_{source}"
df_all_pca[sheet_name] = df_subset[pca_cols].copy()
else:
# Para "real" y otros (como "pretrained"), se guardan en una sola hoja
pca_cols = [col for col in df.columns if col.startswith("PC") or col == "name"]
df_all_pca[key] = df[pca_cols].copy()
# Crear un buffer en memoria para el archivo Excel
excel_buffer = io.BytesIO()
# Escribir cada DataFrame en una hoja separada usando ExcelWriter
with pd.ExcelWriter(excel_buffer, engine='openpyxl') as writer:
for key_name, df in df_all_pca.items():
df.to_excel(writer, sheet_name=key_name, index=False)
excel_buffer.seek(0)
st.download_button(
label="Download Embeddings in PCA Space",
data=excel_buffer,
file_name=f"df_all_pca_{model_name.lower()}.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
key=f"download_pca_coordinates_{model_name}"
)
elif reduction_method == "t-SNE":
st.markdown("## t-SNE - Solo Muestras Reales")
# -------------------------------------------------------------------------
# 1. t-SNE sobre las muestras reales
df_real_only = embeddings["real"].copy()
reducer_real = TSNE(n_components=2, perplexity=30, random_state=42)
reduced_real = reducer_real.fit_transform(df_real_only[embedding_cols].values)
# Agregar columnas TSNE1, TSNE2
df_real_only['TSNE1'] = reduced_real[:, 0]
df_real_only['TSNE2'] = reduced_real[:, 1]
# Construir df_all de forma consistente con PCA
df_all = {}
df_all["real"] = df_real_only.copy()
if "synthetic" in embeddings:
df_all["synthetic"] = embeddings["synthetic"].copy()
if "pretrained" in embeddings:
df_all["pretrained"] = embeddings["pretrained"].copy()
unique_labels_real = sorted(df_real_only['label'].unique().tolist())
# Mapeo de colores para las muestras reales usando la paleta Reds9
num_labels = len(unique_labels_real)
if num_labels <= 9:
red_palette = Reds9[:num_labels]
else:
red_palette = (Reds9 * ((num_labels // 9) + 1))[:num_labels]
real_color_mapping = {label: red_palette[i] for i, label in enumerate(unique_labels_real)}
# -------------------------------------------------------------------------
# Crear plot interactivo con Bokeh
st.subheader("t-SNE - Real: Visualización Interactiva")
source = ColumnDataSource(df_real_only)
hover = HoverTool(tooltips=[
("Index", "$index"),
("Label", "@label"),
("TSNE1", "@TSNE1"),
("TSNE2", "@TSNE2")
])
p = figure(
width=800,
height=600,
title="t-SNE sobre muestras reales",
tools=["pan", "wheel_zoom", "box_zoom", "reset", hover]
)
for label in unique_labels_real:
subset = df_real_only[df_real_only['label'] == label]
p.scatter(
x=subset["TSNE1"],
y=subset["TSNE2"],
size=8,
color=real_color_mapping[label],
alpha=0.7,
legend_label=str(label)
)
p.legend.title = "Label"
p.legend.location = "top_right"
p.xaxis.axis_label = "t-SNE 1"
p.yaxis.axis_label = "t-SNE 2"
st.bokeh_chart(p, use_container_width=True)
# -------------------------------------------------------------------------
# BLOQUE: Heatmap de Características (adaptado a TSNE1 y TSNE2)
st.markdown("## Heatmap de Características")
try:
df_heat = pd.read_csv(f"data/heatmaps_{model_name.lower()}.csv")
except Exception as e:
st.error(f"Error al cargar heatmaps.csv: {e}")
df_heat = None
if df_heat is not None:
if 'img' not in df_all["real"].columns:
st.error("La columna 'img' no se encuentra en las muestras reales para hacer el merge con heatmaps.csv.")
else:
# Crear columna 'name' en las muestras reales (si aún no existe)
df_all["real"]["name"] = df_all["real"]["img"].apply(
lambda x: x.split("/")[-1].replace(".png", "") if isinstance(x, str) else x
)
# Merge con heatmaps.csv
df_heatmap_base = pd.merge(df_all["real"], df_heat, on="name", how="inner")
# Opciones de features
feature_options = [col for col in df_heat.columns if col != "name"]
selected_feature = st.selectbox("Select heatmap feature:",
options=feature_options, key=f"heatmap_{model_name}")
select_extra_dataset_hm = st.selectbox("Select a dataset:",
options=model_options_with_default, key=f"heatmap_extra_dataset_{model_name}")
# Solo una combinación: TSNE1 vs TSNE2
x_comp, y_comp = "TSNE1", "TSNE2"
st.markdown(f"### Heatmap: {x_comp} vs {y_comp}")
# Rango real de los datos
df_heatmap = df_heatmap_base.copy()
# Rango real de los datos
x_min, x_max = df_heatmap[x_comp].min(), df_heatmap[x_comp].max()
y_min, y_max = df_heatmap[y_comp].min(), df_heatmap[y_comp].max()
# Opcional: ampliar un poco
padding = 0.05
x_min, x_max = x_min - padding, x_max + padding
y_min, y_max = y_min - padding, y_max + padding
# Definir rejilla
grid_size = st.slider("Grid size (resolución del heatmap)", min_value=10, max_value=100, value=40, step=5, key=f"grid_size_{model_name}")
x_bins = np.linspace(x_min, x_max, grid_size + 1)
y_bins = np.linspace(y_min, y_max, grid_size + 1)
# Usar los mismos valores para figure y image
x_range, y_range = (x_min, x_max), (y_min, y_max)
df_heatmap["x"] = df_heatmap[x_comp]
df_heatmap["y"] = df_heatmap[y_comp]
df_heatmap['x'] = np.nan_to_num(df_heatmap['x'], nan=0.0, posinf=0.0, neginf=0.0)
df_heatmap['y'] = np.nan_to_num(df_heatmap['y'], nan=0.0, posinf=0.0, neginf=0.0)
# Si la feature seleccionada no es numérica, convertir
cat_mapping = None
if df_heatmap[selected_feature].dtype == bool or not pd.api.types.is_numeric_dtype(df_heatmap[selected_feature]):
cat = df_heatmap[selected_feature].astype('category')
cat_mapping = list(cat.cat.categories)
df_heatmap[selected_feature] = cat.cat.codes
# Calcular estadística binned
heat_stat, x_edges, y_edges, binnumber = binned_statistic_2d(
df_heatmap['x'], df_heatmap['y'], df_heatmap[selected_feature],
statistic='mean', bins=[x_bins, y_bins]
)
# Mantener NaN para celdas vacías
heatmap_data = heat_stat.T
cmap = plt.get_cmap("RdYlGn")
red_green_palette = [mcolors.rgb2hex(cmap(i)) for i in np.linspace(0, 1, 256)]
# Color mapper
if selected_feature in model_options:
color_mapper = LinearColorMapper(
palette=red_green_palette,
low=0,
high=1,
nan_color="white"
)
else:
color_mapper = LinearColorMapper(
palette="Viridis256",
low=np.nanmin(heatmap_data),
high=np.nanmax(heatmap_data),
nan_color="white"
)
# Figura heatmap
heatmap_fig = figure(title=f"Heatmap de '{selected_feature}' ({x_comp} vs {y_comp})",
x_range=x_range, y_range=y_range,
width=600, height=600,
tools="pan,wheel_zoom,reset,save", active_scroll="wheel_zoom", tooltips=TOOLTIPS,
sizing_mode="fixed")
heatmap_fig.match_aspect = True
heatmap_fig.xaxis.axis_label = x_comp
heatmap_fig.yaxis.axis_label = y_comp
heatmap_fig.image(image=[heatmap_data], x=x_min, y=y_min,
dw=x_max - x_min, dh=y_max - y_min,
color_mapper=color_mapper)
# Barra de color
color_bar = ColorBar(color_mapper=color_mapper, location=(0, 0))
if cat_mapping is not None:
ticks = list(range(len(cat_mapping)))
color_bar.ticker = FixedTicker(ticks=ticks)
categories_json = json.dumps(cat_mapping)
color_bar.formatter = FuncTickFormatter(code=f"""
var categories = {categories_json};
var index = Math.round(tick);
if(index >= 0 && index < categories.length) {{
return categories[index];
}} else {{
return "";
}}
""")
heatmap_fig.add_layout(color_bar, 'right')
heatmap_fig.background_fill_color = "white"
heatmap_fig.border_fill_color = "white"
# Tooltips
source_points = ColumnDataSource(data={
'x': df_heatmap['x'],
'y': df_heatmap['y'],
'img': df_heatmap['img'],
'label': df_heatmap['name']
})
invisible_renderer = heatmap_fig.circle('x', 'y', size=10, source=source_points, fill_alpha=0, line_alpha=0.5)
# if select_extra_dataset_hm != "-":
# df_extra = df_all["synthetic"][df_all["synthetic"]["source"] == select_extra_dataset_hm].copy()
# df_extra["x"] = df_extra[x_comp]
# df_extra["y"] = df_extra[y_comp]
# if 'name' not in df_extra.columns:
# df_extra["name"] = df_extra["img"].apply(lambda x: x.split("/")[-1].replace(".png", "") if isinstance(x, str) else x)
# source_extra_points = ColumnDataSource(data={
# 'x': df_extra['x'],
# 'y': df_extra['y'],
# 'img': df_extra['img'],
# 'label': df_extra['name']
# })
# heatmap_fig.circle('x', 'y', size=5, source=source_extra_points, fill_alpha=0, line_alpha=0.5, color="purple")
hover_tool_points = HoverTool(renderers=[invisible_renderer], tooltips=TOOLTIPS)
heatmap_fig.add_tools(hover_tool_points)
st.bokeh_chart(heatmap_fig)
# -------------------------------------------------------------------------
# Botón para descargar df_all (Embeddings en t-SNE Space)
if st.button("Download Embeddings in t-SNE Space", key=f"click_download_tsne_coordinates_{model_name}"):
df_all_tsne = {}
for key, df in df_all.items():
if key == "synthetic":
for source in df["source"].unique():
df_subset = df[df["source"] == source].copy()
if "img" in df_subset.columns and "name" not in df_subset.columns:
df_subset["name"] = df_subset["img"].apply(lambda x: x.split("/")[-1].replace(".png", "") if isinstance(x, str) else x)
tsne_cols = [col for col in df_subset.columns if col.startswith("TSNE") or col == "name"]
sheet_name = f"synthetic_{source}"
df_all_tsne[sheet_name] = df_subset[tsne_cols].copy()
else:
tsne_cols = [col for col in df.columns if col.startswith("TSNE") or col == "name"]
df_all_tsne[key] = df[tsne_cols].copy()
excel_buffer = io.BytesIO()
with pd.ExcelWriter(excel_buffer, engine='openpyxl') as writer:
for key_name, df in df_all_tsne.items():
df.to_excel(writer, sheet_name=key_name, index=False)
excel_buffer.seek(0)
st.download_button(
label="Download Embeddings in t-SNE Space",
data=excel_buffer,
file_name=f"df_all_tsne_{model_name.lower()}.xlsx",
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
key=f"download_tsne_coordinates_{model_name}"
)
def main():
config_style()
tabs = st.tabs(["Donut", "Idefics2", "Idefics2-patient", "Paligemma", "Llava"])
with tabs[0]:
st.markdown('<h2 class="sub-title">Donut 🤗</h2>', unsafe_allow_html=True)
run_model("Donut")
with tabs[1]:
st.markdown('<h2 class="sub-title">Idefics2 🤗</h2>', unsafe_allow_html=True)
run_model("Idefics2")
with tabs[2]:
st.markdown('<h2 class="sub-title">Idefics2-patient 🤗</h2>', unsafe_allow_html=True)
run_model("Idefics2-patient")
with tabs[3]:
st.markdown('<h2 class="sub-title">Paligemma 🤗</h2>', unsafe_allow_html=True)
run_model("Paligemma")
with tabs[4]:
st.markdown('<h2 class="sub-title">Llava 🤗</h2>', unsafe_allow_html=True)
run_model("Llava")
if __name__ == "__main__":
model_options = [
"es-digital-paragraph-degradation-seq",
"es-digital-line-degradation-seq",
"es-digital-seq",
"es-digital-noisy-degradation-seq",
"es-digital-seq_es-digital-seq_britanico",
"es-digital-seq_retamar_train-asc-synth",
"es-digital-seq_britanico_es-digital-seq_aletamar",
"es-digital-seq_retamar_train-asc-synth_es-digital-seq_britanico",
"es-digital-seq_retamar_train-asc-synth_es-digital-seq_britanico_v2",
"es-digital-seq_es-digital-seq_aletamar",
"es-render-seq_es-render-seq_aletamar",
"retamar_train-asc-synth_es-digital-seq_britanico",
"es-digital-rotation-degradation-seq",
"es-digital-zoom-degradation-seq",
"es-render-seq",
"es-digital-seq_filtered_deus",
"es-digital-seq_filtered_liceo",
"es-digital-seq_filtered_lusitano",
"es-digital-seq_filtered_monterraso",
"es-digital-seq_filtered_patria",
"es-digital-zoom-0.25-degradation-seq_filtered_deus-liceo-lusitano-monterraso-patria-frozen-encoder",
"es-digital-zoom-0.5-degradation-seq_filtered_deus-liceo-lusitano-monterraso-patria-frozen-encoder",
"es-digital-zoom-0.625-degradation-seq_filtered_deus-liceo-lusitano-monterraso-patria-frozen-encoder",
"es-digital-zoom-0.75-degradation-seq_filtered_deus-liceo-lusitano-monterraso-patria-frozen-encoder",
"es-digital-seq_filtered_deus-liceo-lusitano-monterraso-patria-frozen-encoder",
"es-digital-zoom-degradation-seq_filtered_deus-liceo-lusitano-monterraso-patria-frozen-encoder",
"es-render-seq_filtered_deus-liceo-lusitano-monterraso-patria-frozen-encoder-017",
"es-render-seq_filtered_deus-liceo-lusitano-monterraso-patria-frozen-encoder-016",
"es-digital-rotation-degradation-seq_filtered_deus-liceo-lusitano-monterraso-patria-frozen-encoder",
"retamar_train-asc-synth_filtered_retamar_train-frozen-encoder",
"britanico-retamar_train-asc-synth_filtered_retamar_train-frozen-encoder",
"combination-es-digital-seq",
"combination-es-render-seq",
"retamar_train-asc-synth_es-digital-seq_britanico",
]
model_options_with_default = [""]
model_options_with_default.extend(model_options)
main()
|