File size: 5,664 Bytes
dbca390
 
 
288f6d2
dbca390
 
 
 
 
 
 
 
288f6d2
dbca390
 
288f6d2
dbca390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from document_to_gloss import DocumentToASLConverter
from vectorizer import Vectorizer
from video_gen import create_multi_stitched_video
import gradio as gr
import asyncio
import re
import boto3
import os
from botocore.config import Config
from dotenv import load_dotenv
import requests
import tempfile

# Load environment variables from .env file
load_dotenv()

# Load R2/S3 environment secrets
R2_ENDPOINT = os.environ.get("R2_ENDPOINT")
R2_ACCESS_KEY_ID = os.environ.get("R2_ACCESS_KEY_ID")
R2_SECRET_ACCESS_KEY = os.environ.get("R2_SECRET_ACCESS_KEY")

# Validate that required environment variables are set
if not all([R2_ENDPOINT, R2_ACCESS_KEY_ID, R2_SECRET_ACCESS_KEY]):
    raise ValueError("Missing required R2 environment variables. Please check your .env file.")

title = "AI-SL"
description = "Convert text to ASL!"
article = ("<p style='text-align: center'><a href='https://github.com/deenasun' "
           "target='_blank'>Deena Sun on Github</a></p>")
inputs = gr.File(label="Upload Document (pdf, txt, docx, or epub)")
outputs = [
    gr.JSON(label="Processing Results"), 
    gr.Video(label="ASL Video Output")
]

asl_converter = DocumentToASLConverter()
vectorizer = Vectorizer()
session = boto3.session.Session()

s3 = session.client(
    service_name='s3',
    region_name='auto',
    endpoint_url=R2_ENDPOINT,
    aws_access_key_id=R2_ACCESS_KEY_ID,
    aws_secret_access_key=R2_SECRET_ACCESS_KEY,
    config=Config(signature_version='s3v4')
)

def clean_gloss_token(token):
    """
    Clean a gloss token by removing brackets, newlines, and extra whitespace
    """
    # Remove brackets and newlines
    cleaned = re.sub(r'[\[\]\n\r]', '', token)
    # Remove extra whitespace
    cleaned = re.sub(r'\s+', ' ', cleaned).strip()
    cleaned = cleaned.lower()
    return cleaned

async def parse_vectorize_and_search(file):
    print(file)
    gloss = asl_converter.convert_document(file)
    print("ASL", gloss)
    
    # Split by spaces and clean each token
    gloss_tokens = gloss.split()
    cleaned_tokens = []
    
    for token in gloss_tokens:
        cleaned = clean_gloss_token(token)
        if cleaned:  # Only add non-empty tokens
            cleaned_tokens.append(cleaned)
    
    print("Cleaned tokens:", cleaned_tokens)

    videos = []
    video_files = []  # Store local file paths for stitching
    
    for g in cleaned_tokens:
        print(f"Processing {g}")
        try:
            result = await vectorizer.vector_query_from_supabase(query=g)
            print("result", result)
            if result.get("match", False):
                video_url = result["video_url"]
                videos.append(video_url)
                
                # Download the video
                local_path = download_video_from_url(video_url)
                if local_path:
                    video_files.append(local_path)
                    
        except Exception as e:
            print(f"Error processing {g}: {e}")
            continue
    
    # Create stitched video if we have multiple videos
    stitched_video_path = None
    if len(video_files) > 1:
        try:
            print(f"Creating stitched video from {len(video_files)} videos...")
            stitched_video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
            create_multi_stitched_video(video_files, stitched_video_path)
            print(f"Stitched video created: {stitched_video_path}")
        except Exception as e:
            print(f"Error creating stitched video: {e}")
            stitched_video_path = None
    elif len(video_files) == 1:
        # If only one video, just use it directly
        stitched_video_path = video_files[0]
    
    # Clean up individual video files after stitching
    for video_file in video_files:
        if video_file != stitched_video_path:  # Don't delete the final output
            cleanup_temp_video(video_file)
            
    return {
        "status": "success",
        "videos": videos,
        "video_count": len(videos),
        "gloss": gloss,
        "cleaned_tokens": cleaned_tokens
    }, stitched_video_path

# Create a synchronous wrapper for Gradio
def parse_vectorize_and_search_sync(file):
    return asyncio.run(parse_vectorize_and_search(file))

def download_video_from_url(video_url):
    """
    Download a video from a public R2 URL
    Returns the local file path where the video is saved
    """
    try:
        # Create a temporary file with .mp4 extension
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
        temp_path = temp_file.name
        temp_file.close()
        
        # Download the video
        print(f"Downloading video from: {video_url}")
        response = requests.get(video_url, stream=True)
        response.raise_for_status()
        
        # Save to temporary file
        with open(temp_path, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        
        print(f"Video downloaded to: {temp_path}")
        return temp_path
        
    except Exception as e:
        print(f"Error downloading video: {e}")
        return None

def cleanup_temp_video(file_path):
    """
    Clean up temporary video file
    """
    try:
        if file_path and os.path.exists(file_path):
            os.unlink(file_path)
            print(f"Cleaned up: {file_path}")
    except Exception as e:
        print(f"Error cleaning up file: {e}")

intf = gr.Interface(
    fn=parse_vectorize_and_search_sync, 
    inputs=inputs, 
    outputs=outputs, 
    title=title, 
    description=description, 
    article=article
)
intf.launch(share=True)