File size: 11,680 Bytes
dbca390
 
 
288f6d2
dbca390
 
 
 
 
 
 
 
dadcb61
 
288f6d2
dbca390
 
288f6d2
dbca390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dadcb61
 
dbca390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dadcb61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbca390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dadcb61
 
 
 
 
 
 
dbca390
 
 
 
dadcb61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbca390
 
 
 
 
 
dadcb61
 
 
dbca390
 
 
 
 
 
dadcb61
dbca390
dadcb61
dbca390
dadcb61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbca390
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
from document_to_gloss import DocumentToASLConverter
from vectorizer import Vectorizer
from video_gen import create_multi_stitched_video
import gradio as gr
import asyncio
import re
import boto3
import os
from botocore.config import Config
from dotenv import load_dotenv
import requests
import tempfile
import uuid
import base64

# Load environment variables from .env file
load_dotenv()

# Load R2/S3 environment secrets
R2_ENDPOINT = os.environ.get("R2_ENDPOINT")
R2_ACCESS_KEY_ID = os.environ.get("R2_ACCESS_KEY_ID")
R2_SECRET_ACCESS_KEY = os.environ.get("R2_SECRET_ACCESS_KEY")

# Validate that required environment variables are set
if not all([R2_ENDPOINT, R2_ACCESS_KEY_ID, R2_SECRET_ACCESS_KEY]):
    raise ValueError("Missing required R2 environment variables. Please check your .env file.")

title = "AI-SL"
description = "Convert text to ASL!"
article = ("<p style='text-align: center'><a href='https://github.com/deenasun' "
           "target='_blank'>Deena Sun on Github</a></p>")
inputs = gr.File(label="Upload Document (pdf, txt, docx, or epub)")
outputs = [
    gr.JSON(label="Processing Results"), 
    gr.Video(label="ASL Video Output"),
    gr.HTML(label="Download Link")
]

asl_converter = DocumentToASLConverter()
vectorizer = Vectorizer()
session = boto3.session.Session()

s3 = session.client(
    service_name='s3',
    region_name='auto',
    endpoint_url=R2_ENDPOINT,
    aws_access_key_id=R2_ACCESS_KEY_ID,
    aws_secret_access_key=R2_SECRET_ACCESS_KEY,
    config=Config(signature_version='s3v4')
)

def clean_gloss_token(token):
    """
    Clean a gloss token by removing brackets, newlines, and extra whitespace
    """
    # Remove brackets and newlines
    cleaned = re.sub(r'[\[\]\n\r]', '', token)
    # Remove extra whitespace
    cleaned = re.sub(r'\s+', ' ', cleaned).strip()
    cleaned = cleaned.lower()
    return cleaned


def upload_video_to_r2(video_path, bucket_name="ai-sl-videos"):
    """
    Upload a video file to R2 and return a public URL
    """
    try:
        # Generate a unique filename
        file_extension = os.path.splitext(video_path)[1]
        unique_filename = f"{uuid.uuid4()}{file_extension}"
        
        # Upload to R2
        with open(video_path, 'rb') as video_file:
            s3.upload_fileobj(
                video_file,
                bucket_name,
                unique_filename,
                ExtraArgs={'ACL': 'public-read'}
            )
        
        # Generate the public URL
        video_url = f"{R2_ENDPOINT}/{bucket_name}/{unique_filename}"
        print(f"Video uploaded to R2: {video_url}")
        return video_url
        
    except Exception as e:
        print(f"Error uploading video to R2: {e}")
        return None

def video_to_base64(video_path):
    """
    Convert a video file to base64 string for direct download
    """
    try:
        with open(video_path, 'rb') as video_file:
            video_data = video_file.read()
            base64_data = base64.b64encode(video_data).decode('utf-8')
            return f"data:video/mp4;base64,{base64_data}"
    except Exception as e:
        print(f"Error converting video to base64: {e}")
        return None

def download_video_from_url(video_url):
    """
    Download a video from a public R2 URL
    Returns the local file path where the video is saved
    """
    try:
        # Create a temporary file with .mp4 extension
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
        temp_path = temp_file.name
        temp_file.close()
        
        # Download the video
        print(f"Downloading video from: {video_url}")
        response = requests.get(video_url, stream=True)
        response.raise_for_status()
        
        # Save to temporary file
        with open(temp_path, 'wb') as f:
            for chunk in response.iter_content(chunk_size=8192):
                f.write(chunk)
        
        print(f"Video downloaded to: {temp_path}")
        return temp_path
        
    except Exception as e:
        print(f"Error downloading video: {e}")
        return None


def cleanup_temp_video(file_path):
    """
    Clean up temporary video file
    """
    try:
        if file_path and os.path.exists(file_path):
            os.unlink(file_path)
            print(f"Cleaned up: {file_path}")
    except Exception as e:
        print(f"Error cleaning up file: {e}")


async def parse_vectorize_and_search(file):
    print(file)
    gloss = asl_converter.convert_document(file)
    print("ASL", gloss)
    
    # Split by spaces and clean each token
    gloss_tokens = gloss.split()
    cleaned_tokens = []
    
    for token in gloss_tokens:
        cleaned = clean_gloss_token(token)
        if cleaned:  # Only add non-empty tokens
            cleaned_tokens.append(cleaned)
    
    print("Cleaned tokens:", cleaned_tokens)

    videos = []
    video_files = []  # Store local file paths for stitching
    
    for g in cleaned_tokens:
        print(f"Processing {g}")
        try:
            result = await vectorizer.vector_query_from_supabase(query=g)
            print("result", result)
            if result.get("match", False):
                video_url = result["video_url"]
                videos.append(video_url)
                
                # Download the video
                local_path = download_video_from_url(video_url)
                if local_path:
                    video_files.append(local_path)
                    
        except Exception as e:
            print(f"Error processing {g}: {e}")
            continue
    
    # Create stitched video if we have multiple videos
    stitched_video_path = None
    if len(video_files) > 1:
        try:
            print(f"Creating stitched video from {len(video_files)} videos...")
            stitched_video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
            create_multi_stitched_video(video_files, stitched_video_path)
            print(f"Stitched video created: {stitched_video_path}")
        except Exception as e:
            print(f"Error creating stitched video: {e}")
            stitched_video_path = None
    elif len(video_files) == 1:
        # If only one video, just use it directly
        stitched_video_path = video_files[0]
    
    # Upload final video to R2 and get public URL
    final_video_url = None
    if stitched_video_path:
        final_video_url = upload_video_to_r2(stitched_video_path)
        # Clean up the local file after upload
        cleanup_temp_video(stitched_video_path)
    
    # Clean up individual video files after stitching
    for video_file in video_files:
        if video_file != stitched_video_path:  # Don't delete the final output
            cleanup_temp_video(video_file)
    
    # Create download link HTML
    download_html = ""
    if final_video_url:
        download_html = f"""
        <div style="text-align: center; padding: 20px;">
            <h3>Download Your ASL Video</h3>
            <a href="{final_video_url}" download="asl_video.mp4" 
               style="background-color: #4CAF50; color: white; 
                      padding: 12px 24px; text-decoration: none; 
                      border-radius: 4px; display: inline-block;">
                Download Video
            </a>
            <p style="margin-top: 10px; color: #666;">
                <small>Right-click and "Save As" if the download doesn't 
                       start automatically</small>
            </p>
        </div>
        """
            
    return {
        "status": "success",
        "videos": videos,
        "video_count": len(videos),
        "gloss": gloss,
        "cleaned_tokens": cleaned_tokens,
        "final_video_url": final_video_url
    }, final_video_url, download_html

# Create a synchronous wrapper for Gradio
def parse_vectorize_and_search_sync(file):
    return asyncio.run(parse_vectorize_and_search(file))


async def parse_vectorize_and_search_base64(file):
    """
    Alternative version that returns video as base64 data instead of uploading to R2
    """
    print(file)
    gloss = asl_converter.convert_document(file)
    print("ASL", gloss)
    
    # Split by spaces and clean each token
    gloss_tokens = gloss.split()
    cleaned_tokens = []
    
    for token in gloss_tokens:
        cleaned = clean_gloss_token(token)
        if cleaned:  # Only add non-empty tokens
            cleaned_tokens.append(cleaned)
    
    print("Cleaned tokens:", cleaned_tokens)

    videos = []
    video_files = []  # Store local file paths for stitching
    
    for g in cleaned_tokens:
        print(f"Processing {g}")
        try:
            result = await vectorizer.vector_query_from_supabase(query=g)
            print("result", result)
            if result.get("match", False):
                video_url = result["video_url"]
                videos.append(video_url)
                
                # Download the video
                local_path = download_video_from_url(video_url)
                if local_path:
                    video_files.append(local_path)
                    
        except Exception as e:
            print(f"Error processing {g}: {e}")
            continue
    
    # Create stitched video if we have multiple videos
    stitched_video_path = None
    if len(video_files) > 1:
        try:
            print(f"Creating stitched video from {len(video_files)} videos...")
            stitched_video_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
            create_multi_stitched_video(video_files, stitched_video_path)
            print(f"Stitched video created: {stitched_video_path}")
        except Exception as e:
            print(f"Error creating stitched video: {e}")
            stitched_video_path = None
    elif len(video_files) == 1:
        # If only one video, just use it directly
        stitched_video_path = video_files[0]
    
    # Convert final video to base64
    final_video_base64 = None
    if stitched_video_path:
        final_video_base64 = video_to_base64(stitched_video_path)
        # Clean up the local file after conversion
        cleanup_temp_video(stitched_video_path)
    
    # Clean up individual video files after stitching
    for video_file in video_files:
        if video_file != stitched_video_path:  # Don't delete the final output
            cleanup_temp_video(video_file)
    
    # Create download link HTML for base64
    download_html = ""
    if final_video_base64:
        download_html = f"""
        <div style="text-align: center; padding: 20px;">
            <h3>Download Your ASL Video</h3>
            <a href="{final_video_base64}" download="asl_video.mp4" 
               style="background-color: #4CAF50; color: white; 
                      padding: 12px 24px; text-decoration: none; 
                      border-radius: 4px; display: inline-block;">
                Download Video
            </a>
            <p style="margin-top: 10px; color: #666;">
                <small>Video is embedded directly - click to download</small>
            </p>
        </div>
        """
            
    return {
        "status": "success",
        "videos": videos,
        "video_count": len(videos),
        "gloss": gloss,
        "cleaned_tokens": cleaned_tokens,
        "video_format": "base64"
    }, final_video_base64, download_html

def parse_vectorize_and_search_base64_sync(file):
    return asyncio.run(parse_vectorize_and_search_base64(file))

intf = gr.Interface(
    fn=parse_vectorize_and_search_sync, 
    inputs=inputs, 
    outputs=outputs, 
    title=title, 
    description=description, 
    article=article
)
intf.launch(share=True)