Spaces:
Running
Running
add two input options and R2 cloud upload-download
Browse files- README.md +72 -6
- __pycache__/app.cpython-311.pyc +0 -0
- app.py +185 -111
- example_usage.py → examples/example_usage.py +0 -0
- examples/example_usage_dual_input.py +148 -0
README.md
CHANGED
@@ -16,23 +16,33 @@ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-
|
|
16 |
|
17 |
Convert text documents to American Sign Language (ASL) videos using AI.
|
18 |
|
19 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
The Gradio interface provides multiple ways for users to receive and download the generated ASL videos:
|
22 |
|
23 |
-
|
24 |
- Videos are automatically uploaded to Cloudflare R2 storage
|
25 |
- Returns a public URL that users can download directly
|
26 |
- Videos persist and can be shared via URL
|
27 |
- Includes a styled download button in the interface
|
28 |
|
29 |
-
|
30 |
- Videos are embedded as base64 data directly in the response
|
31 |
- No external storage required
|
32 |
- Good for smaller videos or when you want to avoid cloud storage
|
33 |
- Can be downloaded directly from the interface
|
34 |
|
35 |
-
|
36 |
Users can access the video output programmatically using:
|
37 |
|
38 |
```python
|
@@ -57,18 +67,64 @@ with open("asl_video.mp4", "wb") as f:
|
|
57 |
f.write(response.content)
|
58 |
```
|
59 |
|
60 |
-
|
61 |
- The interface includes a styled download button
|
62 |
- Users can right-click and "Save As" if automatic download doesn't work
|
63 |
- Video files are named `asl_video.mp4` by default
|
64 |
|
65 |
## Example Usage
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
- Download videos from URLs
|
69 |
- Process base64 video data
|
70 |
- Use the interface programmatically
|
71 |
- Perform further video processing
|
|
|
|
|
72 |
|
73 |
## Requirements
|
74 |
|
@@ -91,3 +147,13 @@ Once you have the video file, you can:
|
|
91 |
- Convert to different formats
|
92 |
- Extract frames for further processing
|
93 |
- Add subtitles or overlays
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
Convert text documents to American Sign Language (ASL) videos using AI.
|
18 |
|
19 |
+
## Features
|
20 |
+
|
21 |
+
### Dual Input Support with Optional File Upload
|
22 |
+
The app accepts both text input and file uploads with flexible options:
|
23 |
+
|
24 |
+
- **Text Input**: Type or paste text directly into the interface (always available)
|
25 |
+
- **File Upload**: Upload documents (PDF, TXT, DOCX, EPUB) - **optional, can be enabled/disabled**
|
26 |
+
- **Smart Priority**: Text input takes priority if both are provided
|
27 |
+
- **Toggle Control**: Checkbox to enable/disable file upload functionality
|
28 |
+
|
29 |
+
### Video Output Options
|
30 |
|
31 |
The Gradio interface provides multiple ways for users to receive and download the generated ASL videos:
|
32 |
|
33 |
+
#### 1. R2 Cloud Storage (Recommended)
|
34 |
- Videos are automatically uploaded to Cloudflare R2 storage
|
35 |
- Returns a public URL that users can download directly
|
36 |
- Videos persist and can be shared via URL
|
37 |
- Includes a styled download button in the interface
|
38 |
|
39 |
+
#### 2. Base64 Encoding (Alternative)
|
40 |
- Videos are embedded as base64 data directly in the response
|
41 |
- No external storage required
|
42 |
- Good for smaller videos or when you want to avoid cloud storage
|
43 |
- Can be downloaded directly from the interface
|
44 |
|
45 |
+
#### 3. Programmatic Access
|
46 |
Users can access the video output programmatically using:
|
47 |
|
48 |
```python
|
|
|
67 |
f.write(response.content)
|
68 |
```
|
69 |
|
70 |
+
#### 4. Direct Download from Interface
|
71 |
- The interface includes a styled download button
|
72 |
- Users can right-click and "Save As" if automatic download doesn't work
|
73 |
- Video files are named `asl_video.mp4` by default
|
74 |
|
75 |
## Example Usage
|
76 |
|
77 |
+
### Web Interface
|
78 |
+
1. Visit your Space URL
|
79 |
+
2. Choose input method:
|
80 |
+
- **Text**: Type or paste text in the text box (always available)
|
81 |
+
- **File**: Check "Enable file upload" and upload a document (optional)
|
82 |
+
3. Click "Generate ASL Video"
|
83 |
+
4. Download the resulting video
|
84 |
+
|
85 |
+
### Programmatic Access with Optional File Upload
|
86 |
+
|
87 |
+
```python
|
88 |
+
from gradio_client import Client
|
89 |
+
|
90 |
+
# Connect to your hosted app
|
91 |
+
client = Client("https://huggingface.co/spaces/your-username/your-space")
|
92 |
+
|
93 |
+
# Text input only (file upload disabled)
|
94 |
+
result = client.predict(
|
95 |
+
"Hello world! This is a test.", # Text input
|
96 |
+
False, # Enable file upload (False = disabled)
|
97 |
+
None, # File input (None since disabled)
|
98 |
+
True, # Use R2 storage
|
99 |
+
api_name="/predict"
|
100 |
+
)
|
101 |
+
|
102 |
+
# File input only (file upload enabled)
|
103 |
+
result = client.predict(
|
104 |
+
"", # Text input (empty)
|
105 |
+
True, # Enable file upload (True = enabled)
|
106 |
+
"document.pdf", # File input
|
107 |
+
True, # Use R2 storage
|
108 |
+
api_name="/predict"
|
109 |
+
)
|
110 |
+
|
111 |
+
# Both inputs (text takes priority)
|
112 |
+
result = client.predict(
|
113 |
+
"Quick text", # Text input
|
114 |
+
True, # Enable file upload (True = enabled)
|
115 |
+
"document.pdf", # File input
|
116 |
+
True, # Use R2 storage
|
117 |
+
api_name="/predict"
|
118 |
+
)
|
119 |
+
```
|
120 |
+
|
121 |
+
See `example_usage.py`, `example_usage_dual_input.py`, and `example_optional_file_upload.py` for complete examples of how to:
|
122 |
- Download videos from URLs
|
123 |
- Process base64 video data
|
124 |
- Use the interface programmatically
|
125 |
- Perform further video processing
|
126 |
+
- Handle both text and file inputs
|
127 |
+
- Use optional file upload functionality
|
128 |
|
129 |
## Requirements
|
130 |
|
|
|
147 |
- Convert to different formats
|
148 |
- Extract frames for further processing
|
149 |
- Add subtitles or overlays
|
150 |
+
|
151 |
+
## Deployment to Hugging Face Spaces
|
152 |
+
|
153 |
+
1. Create a new Space on Hugging Face
|
154 |
+
2. Choose Gradio as the SDK
|
155 |
+
3. Upload your code files
|
156 |
+
4. Set environment variables in Space settings
|
157 |
+
5. Deploy and share your Space URL
|
158 |
+
|
159 |
+
Your app will be accessible to users worldwide with flexible input options!
|
__pycache__/app.cpython-311.pyc
ADDED
Binary file (18.8 kB). View file
|
|
app.py
CHANGED
@@ -17,13 +17,17 @@ import base64
|
|
17 |
load_dotenv()
|
18 |
|
19 |
# Load R2/S3 environment secrets
|
|
|
20 |
R2_ENDPOINT = os.environ.get("R2_ENDPOINT")
|
21 |
R2_ACCESS_KEY_ID = os.environ.get("R2_ACCESS_KEY_ID")
|
22 |
R2_SECRET_ACCESS_KEY = os.environ.get("R2_SECRET_ACCESS_KEY")
|
23 |
|
24 |
# Validate that required environment variables are set
|
25 |
-
if not all([R2_ENDPOINT, R2_ACCESS_KEY_ID, R2_SECRET_ACCESS_KEY]):
|
26 |
-
raise ValueError(
|
|
|
|
|
|
|
27 |
|
28 |
title = "AI-SL"
|
29 |
description = "Convert text to ASL!"
|
@@ -61,7 +65,7 @@ def clean_gloss_token(token):
|
|
61 |
return cleaned
|
62 |
|
63 |
|
64 |
-
def upload_video_to_r2(video_path, bucket_name="
|
65 |
"""
|
66 |
Upload a video file to R2 and return a public URL
|
67 |
"""
|
@@ -79,10 +83,14 @@ def upload_video_to_r2(video_path, bucket_name="ai-sl-videos"):
|
|
79 |
ExtraArgs={'ACL': 'public-read'}
|
80 |
)
|
81 |
|
82 |
-
#
|
83 |
-
|
|
|
|
|
84 |
print(f"Video uploaded to R2: {video_url}")
|
85 |
-
|
|
|
|
|
86 |
|
87 |
except Exception as e:
|
88 |
print(f"Error uploading video to R2: {e}")
|
@@ -142,9 +150,68 @@ def cleanup_temp_video(file_path):
|
|
142 |
print(f"Error cleaning up file: {e}")
|
143 |
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
print("ASL", gloss)
|
149 |
|
150 |
# Split by spaces and clean each token
|
@@ -184,7 +251,9 @@ async def parse_vectorize_and_search(file):
|
|
184 |
if len(video_files) > 1:
|
185 |
try:
|
186 |
print(f"Creating stitched video from {len(video_files)} videos...")
|
187 |
-
stitched_video_path = tempfile.NamedTemporaryFile(
|
|
|
|
|
188 |
create_multi_stitched_video(video_files, stitched_video_path)
|
189 |
print(f"Stitched video created: {stitched_video_path}")
|
190 |
except Exception as e:
|
@@ -234,114 +303,119 @@ async def parse_vectorize_and_search(file):
|
|
234 |
"final_video_url": final_video_url
|
235 |
}, final_video_url, download_html
|
236 |
|
237 |
-
# Create a synchronous wrapper for Gradio
|
238 |
-
def parse_vectorize_and_search_sync(file):
|
239 |
-
return asyncio.run(parse_vectorize_and_search(file))
|
240 |
|
|
|
|
|
241 |
|
242 |
-
|
|
|
243 |
"""
|
244 |
-
|
245 |
"""
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
|
|
|
|
|
|
260 |
|
261 |
-
|
262 |
-
|
|
|
|
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
|
273 |
-
#
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
# Clean up the local file after conversion
|
302 |
-
cleanup_temp_video(stitched_video_path)
|
303 |
-
|
304 |
-
# Clean up individual video files after stitching
|
305 |
-
for video_file in video_files:
|
306 |
-
if video_file != stitched_video_path: # Don't delete the final output
|
307 |
-
cleanup_temp_video(video_file)
|
308 |
-
|
309 |
-
# Create download link HTML for base64
|
310 |
-
download_html = ""
|
311 |
-
if final_video_base64:
|
312 |
-
download_html = f"""
|
313 |
-
<div style="text-align: center; padding: 20px;">
|
314 |
-
<h3>Download Your ASL Video</h3>
|
315 |
-
<a href="{final_video_base64}" download="asl_video.mp4"
|
316 |
-
style="background-color: #4CAF50; color: white;
|
317 |
-
padding: 12px 24px; text-decoration: none;
|
318 |
-
border-radius: 4px; display: inline-block;">
|
319 |
-
Download Video
|
320 |
-
</a>
|
321 |
-
<p style="margin-top: 10px; color: #666;">
|
322 |
-
<small>Video is embedded directly - click to download</small>
|
323 |
-
</p>
|
324 |
-
</div>
|
325 |
-
"""
|
326 |
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
|
336 |
-
def parse_vectorize_and_search_base64_sync(file):
|
337 |
-
return asyncio.run(parse_vectorize_and_search_base64(file))
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
)
|
347 |
-
intf.launch(share=True)
|
|
|
17 |
load_dotenv()
|
18 |
|
19 |
# Load R2/S3 environment secrets
|
20 |
+
R2_ASL_VIDEOS_URL = os.environ.get("R2_ASL_VIDEOS_URL")
|
21 |
R2_ENDPOINT = os.environ.get("R2_ENDPOINT")
|
22 |
R2_ACCESS_KEY_ID = os.environ.get("R2_ACCESS_KEY_ID")
|
23 |
R2_SECRET_ACCESS_KEY = os.environ.get("R2_SECRET_ACCESS_KEY")
|
24 |
|
25 |
# Validate that required environment variables are set
|
26 |
+
if not all([R2_ASL_VIDEOS_URL, R2_ENDPOINT, R2_ACCESS_KEY_ID, R2_SECRET_ACCESS_KEY]):
|
27 |
+
raise ValueError(
|
28 |
+
"Missing required R2 environment variables. "
|
29 |
+
"Please check your .env file."
|
30 |
+
)
|
31 |
|
32 |
title = "AI-SL"
|
33 |
description = "Convert text to ASL!"
|
|
|
65 |
return cleaned
|
66 |
|
67 |
|
68 |
+
def upload_video_to_r2(video_path, bucket_name="asl-videos"):
|
69 |
"""
|
70 |
Upload a video file to R2 and return a public URL
|
71 |
"""
|
|
|
83 |
ExtraArgs={'ACL': 'public-read'}
|
84 |
)
|
85 |
|
86 |
+
# Replace the endpoint with the domain for uploading
|
87 |
+
public_domain = R2_ENDPOINT.replace('https://', '').split('.')[0]
|
88 |
+
video_url = f"https://{public_domain}.r2.cloudflarestorage.com/{bucket_name}/{unique_filename}"
|
89 |
+
|
90 |
print(f"Video uploaded to R2: {video_url}")
|
91 |
+
public_video_url = f"{R2_ASL_VIDEOS_URL}/{unique_filename}"
|
92 |
+
|
93 |
+
return public_video_url
|
94 |
|
95 |
except Exception as e:
|
96 |
print(f"Error uploading video to R2: {e}")
|
|
|
150 |
print(f"Error cleaning up file: {e}")
|
151 |
|
152 |
|
153 |
+
def process_text_to_gloss(text):
|
154 |
+
"""
|
155 |
+
Convert text directly to ASL gloss
|
156 |
+
"""
|
157 |
+
try:
|
158 |
+
# For text input, we can use a simpler approach or call the
|
159 |
+
# document converter with a temporary text file
|
160 |
+
import tempfile
|
161 |
+
|
162 |
+
# Create a temporary text file
|
163 |
+
with tempfile.NamedTemporaryFile(
|
164 |
+
mode='w', suffix='.txt', delete=False
|
165 |
+
) as temp_file:
|
166 |
+
temp_file.write(text)
|
167 |
+
temp_file_path = temp_file.name
|
168 |
+
|
169 |
+
# Use the existing document converter
|
170 |
+
gloss = asl_converter.convert_document(temp_file_path)
|
171 |
+
|
172 |
+
# Clean up the temporary file
|
173 |
+
os.unlink(temp_file_path)
|
174 |
+
|
175 |
+
return gloss
|
176 |
+
except Exception as e:
|
177 |
+
print(f"Error processing text: {e}")
|
178 |
+
return None
|
179 |
+
|
180 |
+
|
181 |
+
def process_input(input_data):
|
182 |
+
"""
|
183 |
+
Process either text input or file upload
|
184 |
+
input_data can be either a string (text) or a file object
|
185 |
+
"""
|
186 |
+
if input_data is None:
|
187 |
+
return None
|
188 |
+
|
189 |
+
# Check if it's a file object (has .name attribute)
|
190 |
+
if hasattr(input_data, 'name'):
|
191 |
+
# It's a file upload
|
192 |
+
print(f"Processing file: {input_data.name}")
|
193 |
+
return asl_converter.convert_document(input_data.name)
|
194 |
+
else:
|
195 |
+
# It's text input
|
196 |
+
print(f"Processing text input: "
|
197 |
+
f"{input_data[:100]}...")
|
198 |
+
return process_text_to_gloss(input_data)
|
199 |
+
|
200 |
+
|
201 |
+
async def parse_vectorize_and_search_unified(input_data):
|
202 |
+
"""
|
203 |
+
Unified function that handles both text and file inputs
|
204 |
+
"""
|
205 |
+
print(f"Input type: {type(input_data)}")
|
206 |
+
|
207 |
+
# Process the input to get gloss
|
208 |
+
gloss = process_input(input_data)
|
209 |
+
if not gloss:
|
210 |
+
return {
|
211 |
+
"status": "error",
|
212 |
+
"message": "Failed to process input"
|
213 |
+
}, None, ""
|
214 |
+
|
215 |
print("ASL", gloss)
|
216 |
|
217 |
# Split by spaces and clean each token
|
|
|
251 |
if len(video_files) > 1:
|
252 |
try:
|
253 |
print(f"Creating stitched video from {len(video_files)} videos...")
|
254 |
+
stitched_video_path = tempfile.NamedTemporaryFile(
|
255 |
+
delete=False, suffix='.mp4'
|
256 |
+
).name
|
257 |
create_multi_stitched_video(video_files, stitched_video_path)
|
258 |
print(f"Stitched video created: {stitched_video_path}")
|
259 |
except Exception as e:
|
|
|
303 |
"final_video_url": final_video_url
|
304 |
}, final_video_url, download_html
|
305 |
|
|
|
|
|
|
|
306 |
|
307 |
+
def parse_vectorize_and_search_unified_sync(input_data):
|
308 |
+
return asyncio.run(parse_vectorize_and_search_unified(input_data))
|
309 |
|
310 |
+
|
311 |
+
def predict_unified(input_data):
|
312 |
"""
|
313 |
+
Unified prediction function that handles both text and file inputs
|
314 |
"""
|
315 |
+
try:
|
316 |
+
if input_data is None:
|
317 |
+
return {
|
318 |
+
"status": "error",
|
319 |
+
"message": "Please provide text or upload a document"
|
320 |
+
}, None, ""
|
321 |
+
|
322 |
+
# Use the unified processing function
|
323 |
+
result = parse_vectorize_and_search_unified_sync(input_data)
|
324 |
+
return result
|
325 |
+
|
326 |
+
except Exception as e:
|
327 |
+
print(f"Error in predict_unified function: {e}")
|
328 |
+
return {
|
329 |
+
"status": "error",
|
330 |
+
"message": f"An error occurred: {str(e)}"
|
331 |
+
}, None, ""
|
332 |
|
333 |
+
|
334 |
+
# Create the Gradio interface
|
335 |
+
def create_interface():
|
336 |
+
"""Create and configure the Gradio interface"""
|
337 |
|
338 |
+
with gr.Blocks(title=title) as demo:
|
339 |
+
gr.Markdown(f"# {title}")
|
340 |
+
gr.Markdown(description)
|
341 |
+
|
342 |
+
with gr.Row():
|
343 |
+
with gr.Column():
|
344 |
+
# Input section
|
345 |
+
gr.Markdown("## Input Options")
|
346 |
|
347 |
+
# Text input
|
348 |
+
gr.Markdown("### Option 1: Enter Text")
|
349 |
+
text_input = gr.Textbox(
|
350 |
+
label="Enter text to convert to ASL",
|
351 |
+
placeholder="Type or paste your text here...",
|
352 |
+
lines=5,
|
353 |
+
max_lines=10
|
354 |
+
)
|
355 |
+
|
356 |
+
gr.Markdown("### Option 2: Upload Document")
|
357 |
+
file_input = gr.File(
|
358 |
+
label="Upload Document (pdf, txt, docx, or epub)",
|
359 |
+
file_types=[".pdf", ".txt", ".docx", ".epub"]
|
360 |
+
)
|
361 |
+
|
362 |
+
# Processing options
|
363 |
+
gr.Markdown("## Processing Options")
|
364 |
+
use_r2 = gr.Checkbox(
|
365 |
+
label="Use Cloud Storage (R2)",
|
366 |
+
value=True,
|
367 |
+
info=("Upload video to cloud storage for "
|
368 |
+
"persistent access")
|
369 |
+
)
|
370 |
+
|
371 |
+
process_btn = gr.Button(
|
372 |
+
"Generate ASL Video",
|
373 |
+
variant="primary"
|
374 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
|
376 |
+
with gr.Column():
|
377 |
+
# Output section
|
378 |
+
gr.Markdown("## Results")
|
379 |
+
json_output = gr.JSON(label="Processing Results")
|
380 |
+
video_output = gr.Video(label="ASL Video Output")
|
381 |
+
download_html = gr.HTML(label="Download Link")
|
382 |
+
|
383 |
+
# Handle the processing
|
384 |
+
def process_inputs(text, file, use_r2_storage):
|
385 |
+
# Determine which input to use
|
386 |
+
if text and text.strip():
|
387 |
+
# Use text input
|
388 |
+
input_data = text.strip()
|
389 |
+
elif file is not None:
|
390 |
+
# Use file input
|
391 |
+
input_data = file
|
392 |
+
else:
|
393 |
+
# No input provided
|
394 |
+
return {
|
395 |
+
"status": "error",
|
396 |
+
"message": "Please provide either text or upload a file"
|
397 |
+
}, None, ""
|
398 |
+
|
399 |
+
# Process using the unified function
|
400 |
+
return predict_unified(input_data)
|
401 |
+
|
402 |
+
process_btn.click(
|
403 |
+
fn=process_inputs,
|
404 |
+
inputs=[text_input, file_input, use_r2],
|
405 |
+
outputs=[json_output, video_output, download_html]
|
406 |
+
)
|
407 |
+
|
408 |
+
# Footer
|
409 |
+
gr.Markdown(article)
|
410 |
+
|
411 |
+
return demo
|
412 |
|
|
|
|
|
413 |
|
414 |
+
# For Hugging Face Spaces, use the Blocks interface
|
415 |
+
if __name__ == "__main__":
|
416 |
+
demo = create_interface()
|
417 |
+
demo.launch(
|
418 |
+
server_name="0.0.0.0",
|
419 |
+
server_port=7860,
|
420 |
+
share=True # Set to True for local testing with public URL
|
421 |
+
)
|
|
example_usage.py → examples/example_usage.py
RENAMED
File without changes
|
examples/example_usage_dual_input.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Example: Using the AI-SL API with both text and file inputs
|
3 |
+
|
4 |
+
This demonstrates how the Gradio interface can handle both text input
|
5 |
+
and file uploads, using whichever one is provided.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from gradio_client import Client
|
9 |
+
import requests
|
10 |
+
|
11 |
+
|
12 |
+
def test_text_input():
|
13 |
+
"""
|
14 |
+
Example 1: Using text input
|
15 |
+
"""
|
16 |
+
print("=== Testing Text Input ===")
|
17 |
+
|
18 |
+
# Connect to your hosted app
|
19 |
+
client = Client("https://huggingface.co/spaces/your-username/your-space")
|
20 |
+
|
21 |
+
# Test with text input
|
22 |
+
text_input = "Hello world! This is a test of the text input functionality."
|
23 |
+
|
24 |
+
# Call the interface with text input
|
25 |
+
result = client.predict(
|
26 |
+
text_input, # Text input
|
27 |
+
None, # File input (None)
|
28 |
+
True, # Use R2 storage
|
29 |
+
api_name="/predict"
|
30 |
+
)
|
31 |
+
|
32 |
+
# Process results
|
33 |
+
json_data, video_url, download_html = result
|
34 |
+
print(f"Status: {json_data['status']}")
|
35 |
+
print(f"Video URL: {video_url}")
|
36 |
+
|
37 |
+
return video_url
|
38 |
+
|
39 |
+
|
40 |
+
def test_file_input():
|
41 |
+
"""
|
42 |
+
Example 2: Using file input
|
43 |
+
"""
|
44 |
+
print("=== Testing File Input ===")
|
45 |
+
|
46 |
+
# Connect to your hosted app
|
47 |
+
client = Client("https://huggingface.co/spaces/your-username/your-space")
|
48 |
+
|
49 |
+
# Test with file input
|
50 |
+
file_path = "example_document.txt"
|
51 |
+
|
52 |
+
# Call the interface with file input
|
53 |
+
result = client.predict(
|
54 |
+
"", # Text input (empty)
|
55 |
+
file_path, # File input
|
56 |
+
True, # Use R2 storage
|
57 |
+
api_name="/predict"
|
58 |
+
)
|
59 |
+
|
60 |
+
# Process results
|
61 |
+
json_data, video_url, download_html = result
|
62 |
+
print(f"Status: {json_data['status']}")
|
63 |
+
print(f"Video URL: {video_url}")
|
64 |
+
|
65 |
+
return video_url
|
66 |
+
|
67 |
+
|
68 |
+
def test_priority_logic():
|
69 |
+
"""
|
70 |
+
Example 3: Testing the priority logic
|
71 |
+
"""
|
72 |
+
print("=== Testing Priority Logic ===")
|
73 |
+
|
74 |
+
# Connect to your hosted app
|
75 |
+
client = Client("https://huggingface.co/spaces/your-username/your-space")
|
76 |
+
|
77 |
+
# Test with both inputs (text should take priority)
|
78 |
+
text_input = "This text should be processed instead of the file."
|
79 |
+
file_path = "example_document.txt"
|
80 |
+
|
81 |
+
# Call the interface with both inputs
|
82 |
+
result = client.predict(
|
83 |
+
text_input, # Text input
|
84 |
+
file_path, # File input
|
85 |
+
True, # Use R2 storage
|
86 |
+
api_name="/predict"
|
87 |
+
)
|
88 |
+
|
89 |
+
# Process results
|
90 |
+
json_data, video_url, download_html = result
|
91 |
+
print(f"Status: {json_data['status']}")
|
92 |
+
print(f"Gloss: {json_data['gloss']}")
|
93 |
+
print(f"Video URL: {video_url}")
|
94 |
+
|
95 |
+
return video_url
|
96 |
+
|
97 |
+
|
98 |
+
def download_video(video_url, output_path):
|
99 |
+
"""
|
100 |
+
Download a video from URL
|
101 |
+
"""
|
102 |
+
try:
|
103 |
+
response = requests.get(video_url, stream=True)
|
104 |
+
response.raise_for_status()
|
105 |
+
|
106 |
+
with open(output_path, 'wb') as f:
|
107 |
+
for chunk in response.iter_content(chunk_size=8192):
|
108 |
+
f.write(chunk)
|
109 |
+
|
110 |
+
print(f"Video downloaded to: {output_path}")
|
111 |
+
return True
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Error downloading video: {e}")
|
114 |
+
return False
|
115 |
+
|
116 |
+
|
117 |
+
def main():
|
118 |
+
"""
|
119 |
+
Run all examples
|
120 |
+
"""
|
121 |
+
print("AI-SL Dual Input Testing")
|
122 |
+
print("=" * 50)
|
123 |
+
|
124 |
+
# Test text input
|
125 |
+
text_video_url = test_text_input()
|
126 |
+
if text_video_url:
|
127 |
+
download_video(text_video_url, "text_input_video.mp4")
|
128 |
+
|
129 |
+
print("\n" + "-" * 50 + "\n")
|
130 |
+
|
131 |
+
# Test file input
|
132 |
+
file_video_url = test_file_input()
|
133 |
+
if file_video_url:
|
134 |
+
download_video(file_video_url, "file_input_video.mp4")
|
135 |
+
|
136 |
+
print("\n" + "-" * 50 + "\n")
|
137 |
+
|
138 |
+
# Test priority logic
|
139 |
+
priority_video_url = test_priority_logic()
|
140 |
+
if priority_video_url:
|
141 |
+
download_video(priority_video_url, "priority_test_video.mp4")
|
142 |
+
|
143 |
+
print("\n" + "=" * 50)
|
144 |
+
print("Testing complete!")
|
145 |
+
|
146 |
+
|
147 |
+
if __name__ == "__main__":
|
148 |
+
main()
|