Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,444 Bytes
1faad26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
###############################
# chat.py
# Inference for LISA (terminal-based)
###############################
import argparse
import os
import sys
import cv2
from matplotlib import pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor
from model.LISA import LISAForCausalLM
from model.llava import conversation as conversation_lib
from model.llava.mm_utils import tokenizer_image_token
from model.segment_anything.utils.transforms import ResizeLongestSide
from utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX)
def parse_args(args):
parser = argparse.ArgumentParser(description="LISA chat")
parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1")
parser.add_argument("--vis_save_path", default="./vis_output", type=str)
parser.add_argument(
"--precision",
default="bf16",
type=str,
choices=["fp32", "bf16", "fp16"],
help="precision for inference",
)
parser.add_argument("--image_size", default=1024, type=int, help="image size")
parser.add_argument("--model_max_length", default=512, type=int)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument(
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
)
parser.add_argument("--local-rank", default=0, type=int, help="node rank")
parser.add_argument("--load_in_8bit", action="store_true", default=False)
parser.add_argument("--load_in_4bit", action="store_true", default=False)
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
parser.add_argument(
"--conv_type",
default="llava_v1",
type=str,
choices=["llava_v1", "llava_llama_2"],
)
return parser.parse_args(args)
def preprocess(
x,
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
img_size=1024,
) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - pixel_mean) / pixel_std
# Pad
h, w = x.shape[-2:]
padh = img_size - h
padw = img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
def main(args):
args = parse_args(args)
os.makedirs(args.vis_save_path, exist_ok=True)
# NOTE: NO NEED?
# if args.version == "BigData-KSU/RS-llava-v1.5-7b-LoRA":
# tokenizer_base = 'Intel/neural-chat-7b-v3-3'
# else:
# tokenizer_base = args.version
# Create model
tokenizer = AutoTokenizer.from_pretrained(
args.version, # tokenizer_base?
cache_dir=None,
model_max_length=args.model_max_length,
padding_side="right",
use_fast=False,
)
tokenizer.pad_token = tokenizer.unk_token
# num_added_tokens = tokenizer.add_tokens("[SEG]") # NOTE: NO NEED?
args.seg_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
# NOTE: NO NEED?
# if args.use_mm_start_end:
# tokenizer.add_tokens(
# [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
# )
torch_dtype = torch.float32
if args.precision == "bf16":
torch_dtype = torch.bfloat16
elif args.precision == "fp16":
torch_dtype = torch.half
kwargs = {"torch_dtype": torch_dtype}
if args.load_in_4bit:
kwargs.update(
{
"torch_dtype": torch.half,
"load_in_4bit": True,
"quantization_config": BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
llm_int8_skip_modules=["visual_model"],
),
}
)
elif args.load_in_8bit:
kwargs.update(
{
"torch_dtype": torch.half,
"quantization_config": BitsAndBytesConfig(
llm_int8_skip_modules=["visual_model"],
load_in_8bit=True,
),
}
)
model = LISAForCausalLM.from_pretrained(
args.version, low_cpu_mem_usage=True, vision_tower=args.vision_tower, seg_token_idx=args.seg_token_idx, **kwargs
)
model.config.eos_token_id = tokenizer.eos_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model.get_model().initialize_vision_modules(model.get_model().config)
vision_tower = model.get_model().get_vision_tower()
vision_tower.to(dtype=torch_dtype)
if args.precision == "bf16":
model = model.bfloat16().cuda()
elif (
args.precision == "fp16" and (not args.load_in_4bit) and (not args.load_in_8bit)
):
vision_tower = model.get_model().get_vision_tower()
model.model.vision_tower = None
import deepspeed
model_engine = deepspeed.init_inference(
model=model,
dtype=torch.half,
replace_with_kernel_inject=True,
replace_method="auto",
)
model = model_engine.module
model.model.vision_tower = vision_tower.half().cuda()
elif args.precision == "fp32":
model = model.float().cuda()
vision_tower = model.get_model().get_vision_tower()
vision_tower.to(device=args.local_rank)
clip_image_processor = CLIPImageProcessor.from_pretrained(model.config.vision_tower)
transform = ResizeLongestSide(args.image_size)
model.eval()
while True:
conv = conversation_lib.conv_templates[args.conv_type].copy()
conv.messages = []
question = input("Please input your prompt: ")
prompt = DEFAULT_IMAGE_TOKEN + "\n" + question
if args.use_mm_start_end:
replace_token = (
DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
)
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], "")
prompt = conv.get_prompt()
image_path = input("Please input the image path: ")
if not os.path.exists(image_path):
print("File not found in {}".format(image_path))
continue
image_np = cv2.imread(image_path)
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
original_size_list = [image_np.shape[:2]]
image_clip = (
clip_image_processor.preprocess(image_np, return_tensors="pt")[
"pixel_values"
][0]
.unsqueeze(0)
.cuda()
)
if args.precision == "bf16":
image_clip = image_clip.bfloat16()
elif args.precision == "fp16":
image_clip = image_clip.half()
else:
image_clip = image_clip.float()
image = transform.apply_image(image_np)
resize_list = [image.shape[:2]]
image = (
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
.unsqueeze(0)
.cuda()
)
if args.precision == "bf16":
image = image.bfloat16()
elif args.precision == "fp16":
image = image.half()
else:
image = image.float()
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
input_ids = input_ids.unsqueeze(0).cuda()
output_ids, pred_masks = model.evaluate(
image_clip,
image,
input_ids,
resize_list,
original_size_list,
max_new_tokens=512,
tokenizer=tokenizer,
)
output_ids = output_ids[0][output_ids[0] != IMAGE_TOKEN_INDEX]
text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
text_output = text_output.replace("\n", "").replace(" ", " ")
print("text_output: ", text_output)
# for i, pred_mask in enumerate(pred_masks):
# if pred_mask.shape[0] == 0:
# continue
# print("min pre_mask: ", pred_mask.min())
# print("max pre_mask: ", pred_mask.max())
# pred_mask = pred_mask.detach().cpu().numpy()[0]
# pred_mask = pred_mask > 0
# save_path = "{}/{}_mask_{}.jpg".format(
# args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
# )
# cv2.imwrite(save_path, pred_mask * 100)
# print("{} has been saved.".format(save_path))
# save_path = "{}/{}_masked_img_{}.jpg".format(
# args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
# )
# save_img = image_np.copy()
# save_img[pred_mask] = (
# image_np * 0.5
# + pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
# )[pred_mask]
# save_img = cv2.cvtColor(save_img, cv2.COLOR_RGB2BGR)
# cv2.imwrite(save_path, save_img)
# print("{} has been saved.".format(save_path))
for i, pred_mask in enumerate(pred_masks):
if pred_mask.shape[0] == 0:
continue
# ------------------------------------------------------------------
# 1) Prepare / detach / copy stuff
# ------------------------------------------------------------------
# Convert torch tensor -> NumPy
pred_mask_np = pred_mask.detach().cpu().numpy()[0]
# Convert your image from RGB to a float NumPy array if needed
# (Adjust as necessary depending on your original image data type)
image_rgb = image_np.astype(np.float32) # shape (H, W, 3)
# ------------------------------------------------------------------
# 2) Create the Binary Mask & Overlaid Image (subplot #2)
# ------------------------------------------------------------------
# Binary threshold (> 0)
binary_mask = pred_mask_np > 0
# Make a copy of the original image for overlaying
masked_image = image_rgb.copy()
# Option A: Simple half-blend with red for the masked area
# We only modify pixels where binary_mask is True
red_color = np.array([255, 0, 0], dtype=np.float32)
blended_red = image_rgb[binary_mask] * 0.5 + red_color * 0.5
masked_image[binary_mask] = blended_red
# ------------------------------------------------------------------
# 3) Create the Raw Mask (subplot #3) + Colorbar
# ------------------------------------------------------------------
min_val = float(pred_mask_np.min())
max_val = float(pred_mask_np.max())
# Avoid division by zero if min_val == max_val
denom = (max_val - min_val) if (max_val - min_val) != 0 else 1e-8
# Normalize to [0, 1]
normalized_mask = (pred_mask_np - min_val) / denom
# ------------------------------------------------------------------
# 4) Plot everything with Matplotlib
# ------------------------------------------------------------------
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))
# (Left) Original Image
ax1.imshow(image_rgb.astype(np.uint8))
ax1.set_title("Original Image")
ax1.axis("off")
# (Middle) Binary Mask Overlaid
ax2.imshow(masked_image.astype(np.uint8))
ax2.set_title("Binary Mask (>0) in Red")
ax2.axis("off")
# (Right) Raw Mask with Colorbar
# Show the normalized mask in [0..1] range, but apply a color map
im3 = ax3.imshow(normalized_mask, cmap='jet', vmin=0, vmax=1)
ax3.set_title("Raw Mask (Continuous)")
ax3.axis("off")
# Add a colorbar to the third subplot
cbar = fig.colorbar(im3, ax=ax3, fraction=0.046, pad=0.04)
cbar.set_label("Normalized Mask Value")
# Add a main title (optional)
fig.suptitle(f"Question: {question}")
answer = text_output[text_output.find("ASSISTANT"):]
fig.text(0.5, 0.05, f"{answer}", ha='center', va='center')
# ------------------------------------------------------------------
# 5) Show the figure, then save after it’s closed
# ------------------------------------------------------------------
# When plt.show() returns, the figure is closed if interactive mode is off.
plt.show(block=True) # This pauses execution until the window is closed.
# Now save the figure
save_path = "{}/{}_matplotlib_{}.png".format(
args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
)
fig.savefig(save_path)
print(f"Figure saved to: {save_path}")
# Finally close the figure to free memory
plt.close(fig)
if __name__ == "__main__":
main(sys.argv[1:])
|