File size: 13,444 Bytes
1faad26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
###############################
# chat.py
# Inference for LISA (terminal-based)
###############################

import argparse
import os
import sys

import cv2
from matplotlib import pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor

from model.LISA import LISAForCausalLM
from model.llava import conversation as conversation_lib
from model.llava.mm_utils import tokenizer_image_token
from model.segment_anything.utils.transforms import ResizeLongestSide
from utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
                         DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX)


def parse_args(args):
    parser = argparse.ArgumentParser(description="LISA chat")
    parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1")
    parser.add_argument("--vis_save_path", default="./vis_output", type=str)
    parser.add_argument(
        "--precision",
        default="bf16",
        type=str,
        choices=["fp32", "bf16", "fp16"],
        help="precision for inference",
    )
    parser.add_argument("--image_size", default=1024, type=int, help="image size")
    parser.add_argument("--model_max_length", default=512, type=int)
    parser.add_argument("--lora_r", default=8, type=int)
    parser.add_argument(
        "--vision-tower", default="openai/clip-vit-large-patch14", type=str
    )
    parser.add_argument("--local-rank", default=0, type=int, help="node rank")
    parser.add_argument("--load_in_8bit", action="store_true", default=False)
    parser.add_argument("--load_in_4bit", action="store_true", default=False)
    parser.add_argument("--use_mm_start_end", action="store_true", default=True)
    parser.add_argument(
        "--conv_type",
        default="llava_v1",
        type=str,
        choices=["llava_v1", "llava_llama_2"],
    )
    return parser.parse_args(args)


def preprocess(
    x,
    pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
    pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
    img_size=1024,
) -> torch.Tensor:
    """Normalize pixel values and pad to a square input."""
    # Normalize colors
    x = (x - pixel_mean) / pixel_std
    # Pad
    h, w = x.shape[-2:]
    padh = img_size - h
    padw = img_size - w
    x = F.pad(x, (0, padw, 0, padh))
    return x


def main(args):
    args = parse_args(args)
    os.makedirs(args.vis_save_path, exist_ok=True)

    # NOTE: NO NEED?
    # if args.version == "BigData-KSU/RS-llava-v1.5-7b-LoRA":
    #    tokenizer_base = 'Intel/neural-chat-7b-v3-3'
    # else:
    #    tokenizer_base = args.version

    # Create model
    tokenizer = AutoTokenizer.from_pretrained(
        args.version,   # tokenizer_base?
        cache_dir=None,
        model_max_length=args.model_max_length,
        padding_side="right",
        use_fast=False,
    )
    tokenizer.pad_token = tokenizer.unk_token
    # num_added_tokens = tokenizer.add_tokens("[SEG]")  # NOTE: NO NEED?
    args.seg_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids[0]

    # NOTE: NO NEED?
    # if args.use_mm_start_end:
    #     tokenizer.add_tokens(
    #         [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
    #     )

    torch_dtype = torch.float32
    if args.precision == "bf16":
        torch_dtype = torch.bfloat16
    elif args.precision == "fp16":
        torch_dtype = torch.half

    kwargs = {"torch_dtype": torch_dtype}
    if args.load_in_4bit:
        kwargs.update(
            {
                "torch_dtype": torch.half,
                "load_in_4bit": True,
                "quantization_config": BitsAndBytesConfig(
                    load_in_4bit=True,
                    bnb_4bit_compute_dtype=torch.float16,
                    bnb_4bit_use_double_quant=True,
                    bnb_4bit_quant_type="nf4",
                    llm_int8_skip_modules=["visual_model"],
                ),
            }
        )
    elif args.load_in_8bit:
        kwargs.update(
            {
                "torch_dtype": torch.half,
                "quantization_config": BitsAndBytesConfig(
                    llm_int8_skip_modules=["visual_model"],
                    load_in_8bit=True,
                ),
            }
        )

    model = LISAForCausalLM.from_pretrained(
        args.version, low_cpu_mem_usage=True, vision_tower=args.vision_tower, seg_token_idx=args.seg_token_idx, **kwargs
    )

    model.config.eos_token_id = tokenizer.eos_token_id
    model.config.bos_token_id = tokenizer.bos_token_id
    model.config.pad_token_id = tokenizer.pad_token_id

    model.get_model().initialize_vision_modules(model.get_model().config)
    vision_tower = model.get_model().get_vision_tower()
    vision_tower.to(dtype=torch_dtype)

    if args.precision == "bf16":
        model = model.bfloat16().cuda()
    elif (
        args.precision == "fp16" and (not args.load_in_4bit) and (not args.load_in_8bit)
    ):
        vision_tower = model.get_model().get_vision_tower()
        model.model.vision_tower = None
        import deepspeed

        model_engine = deepspeed.init_inference(
            model=model,
            dtype=torch.half,
            replace_with_kernel_inject=True,
            replace_method="auto",
        )
        model = model_engine.module
        model.model.vision_tower = vision_tower.half().cuda()
    elif args.precision == "fp32":
        model = model.float().cuda()

    vision_tower = model.get_model().get_vision_tower()
    vision_tower.to(device=args.local_rank)

    clip_image_processor = CLIPImageProcessor.from_pretrained(model.config.vision_tower)
    transform = ResizeLongestSide(args.image_size)

    model.eval()

    while True:
        conv = conversation_lib.conv_templates[args.conv_type].copy()
        conv.messages = []

        question = input("Please input your prompt: ")
        prompt = DEFAULT_IMAGE_TOKEN + "\n" + question
        if args.use_mm_start_end:
            replace_token = (
                DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
            )
            prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)

        conv.append_message(conv.roles[0], prompt)
        conv.append_message(conv.roles[1], "")
        prompt = conv.get_prompt()

        image_path = input("Please input the image path: ")
        if not os.path.exists(image_path):
            print("File not found in {}".format(image_path))
            continue

        image_np = cv2.imread(image_path)
        image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
        original_size_list = [image_np.shape[:2]]

        image_clip = (
            clip_image_processor.preprocess(image_np, return_tensors="pt")[
                "pixel_values"
            ][0]
            .unsqueeze(0)
            .cuda()
        )
        if args.precision == "bf16":
            image_clip = image_clip.bfloat16()
        elif args.precision == "fp16":
            image_clip = image_clip.half()
        else:
            image_clip = image_clip.float()

        image = transform.apply_image(image_np)
        resize_list = [image.shape[:2]]

        image = (
            preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
            .unsqueeze(0)
            .cuda()
        )
        if args.precision == "bf16":
            image = image.bfloat16()
        elif args.precision == "fp16":
            image = image.half()
        else:
            image = image.float()

        input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
        input_ids = input_ids.unsqueeze(0).cuda()

        output_ids, pred_masks = model.evaluate(
            image_clip,
            image,
            input_ids,
            resize_list,
            original_size_list,
            max_new_tokens=512,
            tokenizer=tokenizer,
        )
        output_ids = output_ids[0][output_ids[0] != IMAGE_TOKEN_INDEX]

        text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
        text_output = text_output.replace("\n", "").replace("  ", " ")
        print("text_output: ", text_output)

        # for i, pred_mask in enumerate(pred_masks):
        #     if pred_mask.shape[0] == 0:
        #         continue

        #     print("min pre_mask: ", pred_mask.min())
        #     print("max pre_mask: ", pred_mask.max())

        #     pred_mask = pred_mask.detach().cpu().numpy()[0]
        #     pred_mask = pred_mask > 0

        #     save_path = "{}/{}_mask_{}.jpg".format(
        #         args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
        #     )
        #     cv2.imwrite(save_path, pred_mask * 100)
        #     print("{} has been saved.".format(save_path))

        #     save_path = "{}/{}_masked_img_{}.jpg".format(
        #         args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
        #     )
        #     save_img = image_np.copy()
        #     save_img[pred_mask] = (
        #         image_np * 0.5
        #         + pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
        #     )[pred_mask]
        #     save_img = cv2.cvtColor(save_img, cv2.COLOR_RGB2BGR)
        #     cv2.imwrite(save_path, save_img)
        #     print("{} has been saved.".format(save_path))

        for i, pred_mask in enumerate(pred_masks):
            if pred_mask.shape[0] == 0:
                continue

            # ------------------------------------------------------------------
            # 1) Prepare / detach / copy stuff
            # ------------------------------------------------------------------
            # Convert torch tensor -> NumPy
            pred_mask_np = pred_mask.detach().cpu().numpy()[0]
            # Convert your image from RGB to a float NumPy array if needed
            # (Adjust as necessary depending on your original image data type)
            image_rgb = image_np.astype(np.float32)  # shape (H, W, 3)

            # ------------------------------------------------------------------
            # 2) Create the Binary Mask & Overlaid Image (subplot #2)
            # ------------------------------------------------------------------
            # Binary threshold (> 0)
            binary_mask = pred_mask_np > 0

            # Make a copy of the original image for overlaying
            masked_image = image_rgb.copy()
            
            # Option A: Simple half-blend with red for the masked area
            # We only modify pixels where binary_mask is True
            red_color = np.array([255, 0, 0], dtype=np.float32)
            blended_red = image_rgb[binary_mask] * 0.5 + red_color * 0.5
            masked_image[binary_mask] = blended_red

            # ------------------------------------------------------------------
            # 3) Create the Raw Mask (subplot #3) + Colorbar
            # ------------------------------------------------------------------
            min_val = float(pred_mask_np.min())
            max_val = float(pred_mask_np.max())
            # Avoid division by zero if min_val == max_val
            denom = (max_val - min_val) if (max_val - min_val) != 0 else 1e-8

            # Normalize to [0, 1]
            normalized_mask = (pred_mask_np - min_val) / denom

            # ------------------------------------------------------------------
            # 4) Plot everything with Matplotlib
            # ------------------------------------------------------------------
            fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))

            # (Left) Original Image
            ax1.imshow(image_rgb.astype(np.uint8))
            ax1.set_title("Original Image")
            ax1.axis("off")

            # (Middle) Binary Mask Overlaid
            ax2.imshow(masked_image.astype(np.uint8))
            ax2.set_title("Binary Mask (>0) in Red")
            ax2.axis("off")

            # (Right) Raw Mask with Colorbar
            # Show the normalized mask in [0..1] range, but apply a color map
            im3 = ax3.imshow(normalized_mask, cmap='jet', vmin=0, vmax=1)
            ax3.set_title("Raw Mask (Continuous)")
            ax3.axis("off")

            # Add a colorbar to the third subplot
            cbar = fig.colorbar(im3, ax=ax3, fraction=0.046, pad=0.04)
            cbar.set_label("Normalized Mask Value")

            # Add a main title (optional)
            fig.suptitle(f"Question: {question}")
            answer = text_output[text_output.find("ASSISTANT"):]
            fig.text(0.5, 0.05, f"{answer}", ha='center', va='center')

            # ------------------------------------------------------------------
            # 5) Show the figure, then save after it’s closed
            # ------------------------------------------------------------------
            # When plt.show() returns, the figure is closed if interactive mode is off.
            plt.show(block=True)   # This pauses execution until the window is closed.

            # Now save the figure
            save_path = "{}/{}_matplotlib_{}.png".format(
                args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
            )
            fig.savefig(save_path)
            print(f"Figure saved to: {save_path}")

            # Finally close the figure to free memory
            plt.close(fig)


if __name__ == "__main__":
    main(sys.argv[1:])