LISA-AVS-demo / app.py
derektan
Added more OOD examples
81a7e1a
import argparse
import os
import re
import sys
import bleach
import cv2
import gradio as gr
from matplotlib import pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor
from model.LISA import LISAForCausalLM
from model.llava import conversation as conversation_lib
from model.llava.mm_utils import tokenizer_image_token
from model.segment_anything.utils.transforms import ResizeLongestSide
from utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX)
import spaces
def parse_args(args):
parser = argparse.ArgumentParser(description="LISA chat")
parser.add_argument("--version", default="derektan95/LISA-AVS")
parser.add_argument("--vis_save_path", default="./vis_output", type=str)
parser.add_argument(
"--precision",
default="bf16",
type=str,
choices=["fp32", "bf16", "fp16"],
help="precision for inference",
)
parser.add_argument("--image_size", default=1024, type=int, help="image size")
parser.add_argument("--model_max_length", default=512, type=int)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument(
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
)
parser.add_argument("--local-rank", default=0, type=int, help="node rank")
parser.add_argument("--load_in_8bit", action="store_true", default=False)
parser.add_argument("--load_in_4bit", action="store_true", default=False)
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
parser.add_argument(
"--conv_type",
default="llava_v1",
type=str,
choices=["llava_v1", "llava_llama_2"],
)
return parser.parse_args(args)
def preprocess(
x,
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
img_size=1024,
) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - pixel_mean) / pixel_std
# Pad
h, w = x.shape[-2:]
padh = img_size - h
padw = img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
args = parse_args(sys.argv[1:])
os.makedirs(args.vis_save_path, exist_ok=True)
# Create model
tokenizer = AutoTokenizer.from_pretrained(
args.version,
cache_dir=None,
model_max_length=args.model_max_length,
padding_side="right",
use_fast=False,
)
tokenizer.pad_token = tokenizer.unk_token
args.seg_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
torch_dtype = torch.float32
if args.precision == "bf16":
torch_dtype = torch.bfloat16
elif args.precision == "fp16":
torch_dtype = torch.half
kwargs = {"torch_dtype": torch_dtype}
if args.load_in_4bit:
kwargs.update(
{
"torch_dtype": torch.half,
"load_in_4bit": True,
"quantization_config": BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
llm_int8_skip_modules=["visual_model"],
),
}
)
elif args.load_in_8bit:
kwargs.update(
{
"torch_dtype": torch.half,
"quantization_config": BitsAndBytesConfig(
llm_int8_skip_modules=["visual_model"],
load_in_8bit=True,
),
}
)
model = LISAForCausalLM.from_pretrained(
args.version, low_cpu_mem_usage=True, vision_tower=args.vision_tower, seg_token_idx=args.seg_token_idx, **kwargs
)
model.config.eos_token_id = tokenizer.eos_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model.get_model().initialize_vision_modules(model.get_model().config)
vision_tower = model.get_model().get_vision_tower()
vision_tower.to(dtype=torch_dtype)
if args.precision == "bf16":
model = model.bfloat16().cuda()
elif (
args.precision == "fp16" and (not args.load_in_4bit) and (not args.load_in_8bit)
):
vision_tower = model.get_model().get_vision_tower()
model.model.vision_tower = None
import deepspeed
model_engine = deepspeed.init_inference(
model=model,
dtype=torch.half,
replace_with_kernel_inject=True,
replace_method="auto",
)
model = model_engine.module
model.model.vision_tower = vision_tower.half().cuda()
elif args.precision == "fp32":
model = model.float().cuda()
vision_tower = model.get_model().get_vision_tower()
vision_tower.to(device=args.local_rank)
clip_image_processor = CLIPImageProcessor.from_pretrained(model.config.vision_tower)
transform = ResizeLongestSide(args.image_size)
model.eval()
# Gradio
examples_in_domain = [
[
"./imgs/examples/Animalia_Chordata_Aves_Charadriiformes_Laridae_Larus_marinus/80645_39.76079_-74.10316.jpg",
"Where can I find the shore birds (Larus marinus) in this image? Please output segmentation mask.",
],
[
"./imgs/examples/Animalia_Chordata_Mammalia_Rodentia_Caviidae_Hydrochoerus_hydrochaeris/28871_-12.80255_-69.29999.jpg",
"Where can I find the capybaras (Hydrochoerus hydrochaeris) in this image? Please output segmentation mask and explain why.",
],
[
"./imgs/examples/Animalia_Arthropoda_Malacostraca_Decapoda_Ocypodidae_Ocypode_quadrata/277303_38.72364_-75.07749.jpg",
"Where can I find the crabs (Ocypode quadrata) in this image? Please output segmentation mask.",
],
[
"./imgs/examples/Animalia_Chordata_Mammalia_Rodentia_Sciuridae_Marmota_marmota/388246_45.49036_7.14796.jpg",
"Where can I find the marmots (Marmota marmota) in this image? Please output segmentation mask and explain why.",
],
[
"./imgs/examples/Animalia_Chordata_Reptilia_Squamata_Varanidae_Varanus_salvator/410613_5.35573_100.28948.jpg",
"Where can I find monitor lizard (Varanus salvator) in this image? Please output segmentation mask.",
],
]
examples_out_domain = [
[
"./imgs/examples/Animalia_Chordata_Mammalia_Carnivora_Phocidae_Mirounga_angustirostris/27423_35.64005_-121.17595.jpg",
"Where can I find the seals (Animalia Chordata Mammalia Carnivora Phocidae Mirounga angustirostris) in this image? Please output segmentation mask and explain why.",
],
[
"./imgs/examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Urocyon_littoralis/304160_34.0144_-119.54417.jpg",
"Where can I find the raccoons (Animalia Chordata Mammalia Carnivora Canidae Urocyon littoralis) in this image? Please output segmentation mask.",
],
[
"./imgs/examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Canis_aureus/1528408_13.00422_80.23033.jpg",
"Where can I find the wolves (Animalia Chordata Mammalia Carnivora Canidae Canis aureus) in this image? Please output segmentation mask and explain why.",
],
[
"./imgs/examples/Animalia_Chordata_Elasmobranchii_Carcharhiniformes_Carcharhinidae_Triaenodon_obesus/5041_-0.28573_-90.54837.jpg",
"Where can I find the sharks (Animalia Chordata Elasmobranchii Carcharhiniformes Carcharhinidae Triaenodon obesus) in this image? Please output segmentation mask.",
],
[
"./imgs/examples/Animalia_Chordata_Reptilia_Crocodylia_Alligatoridae_Caiman_crocodilus/340271_10.52832_-83.49678.jpg",
"Where can I find the crocodiles (Animalia Chordata Reptilia Crocodylia Alligatoridae Caiman crocodilus) in this image? Please output segmentation mask and explain why.",
],
]
output_labels = ["Segmentation Output"]
title = "LISA-AVS: LISA 7B Model Finetuned on AVS-Bench Dataset"
description = """
<font size=4>
This is an adapted version of the online demo for <a href='https://github.com/dvlab-research/LISA' target='_blank'>LISA</a>, where we finetune from scratch the LISA model (7B) with data from <a href='https://search-tta.github.io/' target='_blank'>AVS-Bench (Search-TTA)</a>. \n
**Note**: Different prompts can lead to significantly varied results. Please **standardize** your input text prompts to **avoid ambiguity**, and pay attention to whether the **punctuations** of the input are correct. \n
**Usage**: <br>
&ensp;(1) To let LISA-AVS **segment something**, input prompt like: "Where can I find the <em>Common Name</em> (<em>Taxonomy Name</em>) in this image? Please output segmentation mask."; <br>
&ensp;(2) To let LISA-AVS **output an explanation**, input prompt like: "Where can I find the <em>Common Name</em> (<em>Taxonomy Name</em>) in this image? Please output segmentation mask and explain why."; <br>
&ensp;(3) To obtain **solely language output**, you can input like what you should do in current multi-modal LLM (e.g., LLaVA), like: "Where can I find the <em>Common Name</em> (<em>Taxonomy Name</em>) in this image?" <br>
</font>
"""
article = """
<p style='text-align: center'>
<a href='https://search-tta.github.io/' target='_blank'>
Search-TTA
</a>
\n
<p style='text-align: center'>
<a href='https://huggingface.co/datasets/derektan95/avs-bench' target='_blank'>
AVS-Bench
</a>
\n
<p style='text-align: center'>
<a href='https://github.com/dvlab-research/LISA' target='_blank'> LISA Project </a></p>
"""
## to be implemented
@spaces.GPU
def inference(input_image, input_str):
## filter out special chars
input_str = bleach.clean(input_str)
print("input_str: ", input_str, "input_image: ", input_image)
## basic validity check: non-empty and reasonable length only
if len(input_str.strip()) == 0 or len(input_str) > 1024:
output_str = f"[Error] Invalid input length: {len(input_str)}"
# Create a red placeholder image to indicate an error
output_image = np.zeros((128, 128, 3), dtype=np.uint8)
output_image[:] = (0, 0, 0) # Red color in RGB
return output_image, output_str
# Model Inference
conv = conversation_lib.conv_templates[args.conv_type].copy()
conv.messages = []
prompt = input_str
prompt = DEFAULT_IMAGE_TOKEN + "\n" + prompt
if args.use_mm_start_end:
replace_token = (
DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
)
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], "")
prompt = conv.get_prompt()
image_np = cv2.imread(input_image)
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
original_size_list = [image_np.shape[:2]]
image_clip = (
clip_image_processor.preprocess(image_np, return_tensors="pt")[
"pixel_values"
][0]
.unsqueeze(0)
.cuda()
)
if args.precision == "bf16":
image_clip = image_clip.bfloat16()
elif args.precision == "fp16":
image_clip = image_clip.half()
else:
image_clip = image_clip.float()
image = transform.apply_image(image_np)
resize_list = [image.shape[:2]]
image = (
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
.unsqueeze(0)
.cuda()
)
if args.precision == "bf16":
image = image.bfloat16()
elif args.precision == "fp16":
image = image.half()
else:
image = image.float()
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
input_ids = input_ids.unsqueeze(0).cuda()
output_ids, pred_masks = model.evaluate(
image_clip,
image,
input_ids,
resize_list,
original_size_list,
max_new_tokens=512,
tokenizer=tokenizer,
)
output_ids = output_ids[0][output_ids[0] != IMAGE_TOKEN_INDEX]
text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
text_output = text_output.replace("\n", "").replace(" ", " ")
text_output = text_output.split("ASSISTANT: ")[-1]
print("text_output: ", text_output)
save_img = None
for i, pred_mask in enumerate(pred_masks):
if pred_mask.shape[0] == 0:
continue
pred_mask_np = pred_mask.detach().cpu().numpy()[0]
# Normalize the continuous score mask to 0-255 range for visualization
min_val = float(pred_mask_np.min())
max_val = float(pred_mask_np.max())
# Avoid division by zero if min_val == max_val
denom = (max_val - min_val) if (max_val - min_val) != 0 else 1e-8
# Normalize to [0, 255] for image display
normalized_mask = ((pred_mask_np - min_val) / denom * 255).astype(np.uint8)
# Apply colormap (jet) to create a colored visualization
save_img = cv2.applyColorMap(normalized_mask, cv2.COLORMAP_VIRIDIS)
save_img = cv2.cvtColor(save_img, cv2.COLOR_BGR2RGB)
# -------------------------------------------------------------
# Add a vertical legend (color bar) to the right of save_img
# -------------------------------------------------------------
legend_width = 30
legend_height = save_img.shape[0]
# Create vertical gradient from 255 (top) to 0 (bottom)
gradient = np.linspace(255, 0, legend_height, dtype=np.uint8).reshape(-1, 1)
gradient = np.repeat(gradient, legend_width, axis=1)
legend_color = cv2.applyColorMap(gradient, cv2.COLORMAP_VIRIDIS)
legend_color = cv2.cvtColor(legend_color, cv2.COLOR_BGR2RGB)
# Put min / max text on legend
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.4
thickness = 1
cv2.putText(legend_color, f"{max_val:.2f}", (2, 12), font, font_scale, (255, 255, 255), thickness, cv2.LINE_AA)
cv2.putText(legend_color, f"{min_val:.2f}", (2, legend_height - 4), font, font_scale, (255, 255, 255), thickness, cv2.LINE_AA)
# Concatenate original visualization with legend
save_img = np.concatenate([save_img, legend_color], axis=1)
output_str = "ASSISTANT: " + text_output # input_str
if save_img is not None:
output_image = save_img # input_image
else:
## no segmentation output, return a black placeholder image
output_image = np.zeros((128, 128, 3), dtype=np.uint8)
return output_image, output_str
with gr.Blocks() as demo:
# Title, description and article
gr.Markdown(f"# {title}")
gr.Markdown(description)
# gr.Markdown(articSle)
# Input and output columns side-by-side
with gr.Row():
with gr.Column(): # Left column – inputs
inp_image = gr.Image(type="filepath", label="Input Image",sources=["upload"])
inp_text = gr.Textbox(lines=1, placeholder=None, label="Text Instruction")
run_btn = gr.Button("Run", variant="primary")
with gr.Column(): # Right column – outputs
out_seg = gr.Image(type="pil", label="Segmentation Output")
out_text = gr.Textbox(lines=1, label="Text Output")
# Bind the button to inference
run_btn.click(fn=inference, inputs=[inp_image, inp_text], outputs=[out_seg, out_text])
# ---------------- Example Galleries ----------------
gr.Markdown("### In-Domain Taxonomy")
gr.Examples(
examples=examples_in_domain,
inputs=[inp_image, inp_text],
outputs=[out_seg, out_text],
fn=inference,
cache_examples=False,
)
gr.Markdown("### Out-Domain Taxonomy")
gr.Examples(
examples=examples_out_domain,
inputs=[inp_image, inp_text],
outputs=[out_seg, out_text],
fn=inference,
cache_examples=False,
)
demo.queue()
demo.launch()