""" Search-TTA demo """ # ────────────────────────── imports ─────────────────────────────────── import cv2 import gradio as gr import torch import numpy as np from PIL import Image import matplotlib.pyplot as plt import io import torchaudio import spaces # integration with ZeroGPU on hf from torchvision import transforms import open_clip from clip_vision_per_patch_model import CLIPVisionPerPatchModel from transformers import ClapAudioModelWithProjection from transformers import ClapProcessor # ────────────────────────── global config & models ──────────────────── device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # BioCLIP (ground-image & text encoder) bio_model, _, _ = open_clip.create_model_and_transforms("hf-hub:imageomics/bioclip") bio_model = bio_model.to(device).eval() bio_tokenizer = open_clip.get_tokenizer("hf-hub:imageomics/bioclip") # Satellite patch encoder CLIP-L-336 per-patch) sat_model: CLIPVisionPerPatchModel = ( CLIPVisionPerPatchModel.from_pretrained("derektan95/search-tta-sat") .to(device) .eval() ) # Sound CLAP model sound_model: ClapAudioModelWithProjection = ( ClapAudioModelWithProjection.from_pretrained("derektan95/search-tta-sound") .to(device) .eval() ) sound_processor: ClapProcessor = ClapProcessor.from_pretrained("derektan95/search-tta-sound") SAMPLE_RATE = 48000 logit_scale = torch.nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) logit_scale = logit_scale.exp() blur_kernel = (5,5) # ────────────────────────── transforms (exact spec) ─────────────────── img_transform = transforms.Compose( [ transforms.Resize((256, 256)), transforms.CenterCrop((224, 224)), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ), ] ) imo_transform = transforms.Compose( [ transforms.Resize((336, 336)), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ), ] ) def get_audio_clap(path_to_audio,format="mp3",padding="repeatpad",truncation="fusion"): track, sr = torchaudio.load(path_to_audio, format=format) # torchaudio.load(path_to_audio) track = track.mean(axis=0) track = torchaudio.functional.resample(track, orig_freq=sr, new_freq=SAMPLE_RATE) output = sound_processor(audios=track, sampling_rate=SAMPLE_RATE, max_length_s=10, return_tensors="pt",padding=padding,truncation=truncation) return output # ────────────────────────── helpers ─────────────────────────────────── @torch.no_grad() def _encode_ground(img_pil: Image.Image) -> torch.Tensor: img = img_transform(img_pil).unsqueeze(0).to(device) img_embeds, *_ = bio_model(img) return img_embeds @torch.no_grad() def _encode_text(text: str) -> torch.Tensor: toks = bio_tokenizer(text).to(device) _, txt_embeds, _ = bio_model(text=toks) return txt_embeds @torch.no_grad() def _encode_sat(img_pil: Image.Image) -> torch.Tensor: imo = imo_transform(img_pil).unsqueeze(0).to(device) imo_embeds = sat_model(imo) return imo_embeds @torch.no_grad() def _encode_sound(sound) -> torch.Tensor: processed_sound = get_audio_clap(sound) for k in processed_sound.keys(): processed_sound[k] = processed_sound[k].to(device) unnormalized_audio_embeds = sound_model(**processed_sound).audio_embeds sound_embeds = torch.nn.functional.normalize(unnormalized_audio_embeds, dim=-1) return sound_embeds def _similarity_heatmap(query: torch.Tensor, patches: torch.Tensor) -> np.ndarray: sims = torch.matmul(query, patches.t()) * logit_scale sims = sims.t().sigmoid() sims = sims[1:].squeeze() # drop CLS token side = int(np.sqrt(len(sims))) sims = sims.reshape(side, side) return sims.cpu().detach().numpy() def _array_to_pil(arr: np.ndarray) -> Image.Image: """ Render arr with viridis, automatically stretching its own min→max to 0→1 so that the most-similar patches appear yellow. """ # Gausian Smoothing if blur_kernel != (0,0): arr = cv2.GaussianBlur(arr, blur_kernel, 0) # --- contrast-stretch to local 0-1 range -------------------------- arr_min, arr_max = float(arr.min()), float(arr.max()) if arr_max - arr_min < 1e-6: # avoid /0 when the heat-map is flat arr_scaled = np.zeros_like(arr) else: arr_scaled = (arr - arr_min) / (arr_max - arr_min) # ------------------------------------------------------------------ fig, ax = plt.subplots(figsize=(2.6, 2.6), dpi=96) ax.imshow(arr_scaled, cmap="viridis", vmin=0.0, vmax=1.0) ax.axis("off") buf = io.BytesIO() plt.tight_layout(pad=0) fig.savefig(buf, format="png", bbox_inches="tight", pad_inches=0) plt.close(fig) buf.seek(0) return Image.open(buf) # ────────────────────────── main inference ──────────────────────────── # integration with ZeroGPU on hf @spaces.GPU(duration=5) def process( sat_img: Image.Image, taxonomy: str, ground_img: Image.Image | None, sound: torch.Tensor | None, ): if sat_img is None: return None, None patches = _encode_sat(sat_img) heat_ground, heat_text, heat_sound = None, None, None if ground_img is not None: q_img = _encode_ground(ground_img) heat_ground = _array_to_pil(_similarity_heatmap(q_img, patches)) if taxonomy.strip(): q_txt = _encode_text(taxonomy.strip()) heat_text = _array_to_pil(_similarity_heatmap(q_txt, patches)) if sound is not None: q_sound = _encode_sound(sound) heat_sound = _array_to_pil(_similarity_heatmap(q_sound, patches)) return heat_ground, heat_text, heat_sound # ────────────────────────── Gradio UI ───────────────────────────────── with gr.Blocks(title="Search-TTA", theme=gr.themes.Base()) as demo: gr.Markdown( """ # Search-TTA: A Multimodal Test-Time Adaptation Framework for Visual Search in the Wild Demo Click on any of the examples below and run the multimodal inference demo. Check out the test-time adaptation feature by switching to the other tab above.
If you encounter any errors, refresh the browser and rerun the demo, or try again the next day. We will improve this in the future.
Project Website """ ) # with gr.Row(): # gr.Markdown( # """ #
#
#

Search-TTA: A Multimodal Test-Time Adaptation Framework for Visual Search in the Wild

# #

\ # Project Website #

# #

[Work in Progress]

#
#
# """ #

WACV 2025

#

\ # Derek M. S. Tan, # Shailesh, # Boyang Liu, # Alok Raj, # Qi Xuan Ang, # Weiheng Dai, # Tanishq Duhan, # Jimmy Chiun, # Yuhong Cao, # Florian Shkurti, # Guillaume Sartoretti #

#

National University of Singapore, University of Toronto, IIT-Dhanbad, Singapore Technologies Engineering

# ) with gr.Row(variant="panel"): # LEFT COLUMN (satellite, taxonomy, run) with gr.Column(): sat_input = gr.Image( label="Satellite Image", sources=["upload"], type="pil", height=320, ) taxonomy_input = gr.Textbox( label="Full Taxonomy Name (optional)", placeholder="e.g. Animalia Chordata Mammalia Rodentia Sciuridae Marmota marmota", ) # ─── NEW: sound input ─────────────────────────── sound_input = gr.Audio( label="Sound Input (optional)", sources=["upload"], # or "microphone" / "url" as you prefer type="filepath", # or "numpy" if you want raw arrays ) run_btn = gr.Button("Run", variant="primary") # RIGHT COLUMN (ground image + two heat-maps) with gr.Column(): ground_input = gr.Image( label="Ground-level Image (optional)", sources=["upload"], type="pil", height=320, ) gr.Markdown("### Heat-map Results") with gr.Row(): # Separate label and image to avoid overlap with gr.Column(scale=1, min_width=100): gr.Markdown("**Ground Image Query**", elem_id="label-ground") heat_ground_out = gr.Image( show_label=False, height=160, # width=160, ) with gr.Column(scale=1, min_width=100): gr.Markdown("**Text Query**", elem_id="label-text") heat_text_out = gr.Image( show_label=False, height=160, # width=160, ) with gr.Column(scale=1, min_width=100): gr.Markdown("**Sound Query**", elem_id="label-sound") heat_sound_out = gr.Image( show_label=False, height=160, # width=160, ) # ─── NEW: sound output ───────────────────────── # sound_output = gr.Audio( # label="Playback", # ) # EXAMPLES with gr.Row(): gr.Markdown("### In-Domain Taxonomy") with gr.Row(): gr.Examples( examples=[ [ "examples/Animalia_Chordata_Aves_Charadriiformes_Laridae_Larus_marinus/80645_39.76079_-74.10316.jpg", "examples/Animalia_Chordata_Aves_Charadriiformes_Laridae_Larus_marinus/cc1ebaf9-899d-49f2-81c8-d452249a8087.jpg", "Animalia Chordata Aves Charadriiformes Laridae Larus marinus", "examples/Animalia_Chordata_Aves_Charadriiformes_Laridae_Larus_marinus/89758229.mp3" ], [ "examples/Animalia_Chordata_Mammalia_Rodentia_Caviidae_Hydrochoerus_hydrochaeris/28871_-12.80255_-69.29999.jpg", "examples/Animalia_Chordata_Mammalia_Rodentia_Caviidae_Hydrochoerus_hydrochaeris/1b8064f8-7deb-4b30-98cd-69da98ba6a3d.jpg", "Animalia Chordata Mammalia Rodentia Caviidae Hydrochoerus hydrochaeris", "examples/Animalia_Chordata_Mammalia_Rodentia_Caviidae_Hydrochoerus_hydrochaeris/166631961.mp3" ], [ "examples/Animalia_Arthropoda_Malacostraca_Decapoda_Ocypodidae_Ocypode_quadrata/277303_38.72364_-75.07749.jpg", "examples/Animalia_Arthropoda_Malacostraca_Decapoda_Ocypodidae_Ocypode_quadrata/0b9cc264-a2ba-44bd-8e41-0d01a6edd1e8.jpg", "Animalia Arthropoda Malacostraca Decapoda Ocypodidae Ocypode quadrata", "examples/Animalia_Arthropoda_Malacostraca_Decapoda_Ocypodidae_Ocypode_quadrata/12372063.mp3" ], [ "examples/Animalia_Chordata_Mammalia_Rodentia_Sciuridae_Marmota_marmota/388246_45.49036_7.14796.jpg", "examples/Animalia_Chordata_Mammalia_Rodentia_Sciuridae_Marmota_marmota/327e1f07-692b-4140-8a3e-bd098bc064ff.jpg", "Animalia Chordata Mammalia Rodentia Sciuridae Marmota marmota", "examples/Animalia_Chordata_Mammalia_Rodentia_Sciuridae_Marmota_marmota/59677071.mp3" ], [ "examples/Animalia_Chordata_Reptilia_Squamata_Varanidae_Varanus_salvator/410613_5.35573_100.28948.jpg", "examples/Animalia_Chordata_Reptilia_Squamata_Varanidae_Varanus_salvator/461d8e6c-0e66-4acc-8ecd-bfd9c218bc14.jpg", "Animalia Chordata Reptilia Squamata Varanidae Varanus salvator", None ], ], inputs=[sat_input, ground_input, taxonomy_input, sound_input], outputs=[heat_ground_out, heat_text_out, heat_sound_out], fn=process, cache_examples=False, ) # EXAMPLES with gr.Row(): gr.Markdown("### Out-Domain Taxonomy") with gr.Row(): gr.Examples( examples=[ [ "examples/Animalia_Chordata_Mammalia_Carnivora_Phocidae_Mirounga_angustirostris/27423_35.64005_-121.17595.jpg", "examples/Animalia_Chordata_Mammalia_Carnivora_Phocidae_Mirounga_angustirostris/3aac526d-c921-452a-af6a-cb4f2f52e2c4.jpg", "Animalia Chordata Mammalia Carnivora Phocidae Mirounga angustirostris", "examples/Animalia_Chordata_Mammalia_Carnivora_Phocidae_Mirounga_angustirostris/3123948.mp3" ], [ "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Canis_aureus/1528408_13.00422_80.23033.jpg", "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Canis_aureus/37faabd2-a613-4461-b27e-82fe5955ecaf.jpg", "Animalia Chordata Mammalia Carnivora Canidae Canis aureus", "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Canis_aureus/189318716.mp3" ], [ "examples/Animalia_Chordata_Mammalia_Carnivora_Ursidae_Ursus_americanus/yosemite_v3_resized.png", "examples/Animalia_Chordata_Mammalia_Carnivora_Ursidae_Ursus_americanus/248820933.jpeg", "Animalia Chordata Mammalia Carnivora Ursidae Ursus americanus", None ], [ "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Urocyon_littoralis/304160_34.0144_-119.54417.jpg", "examples/Animalia_Chordata_Mammalia_Carnivora_Canidae_Urocyon_littoralis/0cbdfbf2-6cfe-4d61-9602-c949f24d0293.jpg", "Animalia Chordata Mammalia Carnivora Canidae Urocyon littoralis", None ], ], inputs=[sat_input, ground_input, taxonomy_input, sound_input], outputs=[heat_ground_out, heat_text_out, heat_sound_out], fn=process, cache_examples=False, ) # CALLBACK run_btn.click( fn=process, inputs=[sat_input, taxonomy_input, ground_input, sound_input], outputs=[heat_ground_out, heat_text_out, heat_sound_out], ) # Footer to point out to model and data from app page. gr.Markdown( """ The satellite image CLIP encoder is fine-tuned using [Sentinel-2 Level 2A](https://docs.sentinel-hub.com/api/latest/data/sentinel-2-l2a/) satellite image and taxonomy images (with GPS locations) from [iNaturalist](https://inaturalist.org/). The sound CLIP encoder is fine-tuned with a subset of the same taxonomy images and their corresponding sounds from [iNaturalist](https://inaturalist.org/). Some of these iNaturalist data are also used in [Taxabind](https://arxiv.org/abs/2411.00683). Note that while some of the examples above result in poor probability distributions, they will be improved using our test-time adaptation framework during the search process. """ ) # LAUNCH if __name__ == "__main__": demo.queue(max_size=15) demo.launch(share=True)