Spaces:
Runtime error
Runtime error
harp (#10)
Browse files- .gitignore +4 -0
- app.py +71 -11
- conf/lora/lora.yml +2 -2
- conf/vampnet.yml +1 -1
- scripts/exp/train.py +7 -7
- scripts/utils/{augment.py → data/augment.py} +1 -1
- scripts/utils/{maestro-reorg.py → data/maestro-reorg.py} +0 -0
- scripts/utils/gtzan_embeddings.py +263 -0
- vampnet/modules/transformer.py +28 -12
.gitignore
CHANGED
|
@@ -182,3 +182,7 @@ models.zip
|
|
| 182 |
.git-old
|
| 183 |
conf/generated/*
|
| 184 |
runs*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
.git-old
|
| 183 |
conf/generated/*
|
| 184 |
runs*/
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
gtzan.zip
|
| 188 |
+
.gtzan_emb_cache
|
app.py
CHANGED
|
@@ -21,8 +21,7 @@ import gradio as gr
|
|
| 21 |
from vampnet.interface import Interface
|
| 22 |
from vampnet import mask as pmask
|
| 23 |
|
| 24 |
-
|
| 25 |
-
# AudioLoader = argbind.bind(at.data.datasets.AudioLoader)
|
| 26 |
|
| 27 |
|
| 28 |
|
|
@@ -54,13 +53,6 @@ def load_interface():
|
|
| 54 |
|
| 55 |
interface = load_interface()
|
| 56 |
|
| 57 |
-
# dataset = at.data.datasets.AudioDataset(
|
| 58 |
-
# loader,
|
| 59 |
-
# sample_rate=interface.codec.sample_rate,
|
| 60 |
-
# duration=interface.coarse.chunk_size_s,
|
| 61 |
-
# n_examples=5000,
|
| 62 |
-
# without_replacement=True,
|
| 63 |
-
# )
|
| 64 |
|
| 65 |
OUT_DIR = Path("gradio-outputs")
|
| 66 |
OUT_DIR.mkdir(exist_ok=True, parents=True)
|
|
@@ -250,6 +242,46 @@ def save_vamp(data):
|
|
| 250 |
return f"saved! your save code is {out_dir.stem}", zip_path
|
| 251 |
|
| 252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
with gr.Blocks() as demo:
|
| 255 |
|
|
@@ -373,7 +405,7 @@ with gr.Blocks() as demo:
|
|
| 373 |
minimum=0,
|
| 374 |
maximum=128,
|
| 375 |
step=1,
|
| 376 |
-
value=
|
| 377 |
)
|
| 378 |
|
| 379 |
|
|
@@ -386,7 +418,7 @@ with gr.Blocks() as demo:
|
|
| 386 |
)
|
| 387 |
|
| 388 |
beat_mask_width = gr.Slider(
|
| 389 |
-
label="beat
|
| 390 |
minimum=0,
|
| 391 |
maximum=200,
|
| 392 |
value=0,
|
|
@@ -546,6 +578,14 @@ with gr.Blocks() as demo:
|
|
| 546 |
|
| 547 |
# mask settings
|
| 548 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 549 |
vamp_button = gr.Button("generate (vamp)!!!")
|
| 550 |
output_audio = gr.Audio(
|
| 551 |
label="output audio",
|
|
@@ -620,4 +660,24 @@ with gr.Blocks() as demo:
|
|
| 620 |
outputs=[thank_you, download_file]
|
| 621 |
)
|
| 622 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 623 |
demo.launch()
|
|
|
|
| 21 |
from vampnet.interface import Interface
|
| 22 |
from vampnet import mask as pmask
|
| 23 |
|
| 24 |
+
from pyharp import ModelCard, build_endpoint
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
|
|
|
|
| 53 |
|
| 54 |
interface = load_interface()
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
OUT_DIR = Path("gradio-outputs")
|
| 58 |
OUT_DIR.mkdir(exist_ok=True, parents=True)
|
|
|
|
| 242 |
return f"saved! your save code is {out_dir.stem}", zip_path
|
| 243 |
|
| 244 |
|
| 245 |
+
def harp_vamp(_input_audio, _beat_mask_width, _sampletemp):
|
| 246 |
+
|
| 247 |
+
out_dir = OUT_DIR / str(uuid.uuid4())
|
| 248 |
+
out_dir.mkdir()
|
| 249 |
+
sig = at.AudioSignal(_input_audio)
|
| 250 |
+
sig = interface.preprocess(sig)
|
| 251 |
+
|
| 252 |
+
z = interface.encode(sig)
|
| 253 |
+
|
| 254 |
+
# build the mask
|
| 255 |
+
mask = pmask.linear_random(z, 1.0)
|
| 256 |
+
if _beat_mask_width > 0:
|
| 257 |
+
beat_mask = interface.make_beat_mask(
|
| 258 |
+
sig,
|
| 259 |
+
after_beat_s=(_beat_mask_width/1000),
|
| 260 |
+
)
|
| 261 |
+
mask = pmask.mask_and(mask, beat_mask)
|
| 262 |
+
|
| 263 |
+
# save the mask as a txt file
|
| 264 |
+
zv, mask_z = interface.coarse_vamp(
|
| 265 |
+
z,
|
| 266 |
+
mask=mask,
|
| 267 |
+
sampling_temperature=_sampletemp,
|
| 268 |
+
return_mask=True,
|
| 269 |
+
gen_fn=interface.coarse.generate,
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
zv = interface.coarse_to_fine(
|
| 274 |
+
zv,
|
| 275 |
+
sampling_temperature=_sampletemp,
|
| 276 |
+
mask=mask,
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
sig = interface.to_signal(zv).cpu()
|
| 280 |
+
print("done")
|
| 281 |
+
|
| 282 |
+
sig.write(out_dir / "output.wav")
|
| 283 |
+
|
| 284 |
+
return sig.path_to_file
|
| 285 |
|
| 286 |
with gr.Blocks() as demo:
|
| 287 |
|
|
|
|
| 405 |
minimum=0,
|
| 406 |
maximum=128,
|
| 407 |
step=1,
|
| 408 |
+
value=3,
|
| 409 |
)
|
| 410 |
|
| 411 |
|
|
|
|
| 418 |
)
|
| 419 |
|
| 420 |
beat_mask_width = gr.Slider(
|
| 421 |
+
label="beat prompt (ms)",
|
| 422 |
minimum=0,
|
| 423 |
maximum=200,
|
| 424 |
value=0,
|
|
|
|
| 578 |
|
| 579 |
# mask settings
|
| 580 |
with gr.Column():
|
| 581 |
+
|
| 582 |
+
# lora_choice = gr.Dropdown(
|
| 583 |
+
# label="lora choice",
|
| 584 |
+
# choices=list(loras.keys()),
|
| 585 |
+
# value=LORA_NONE,
|
| 586 |
+
# visible=False
|
| 587 |
+
# )
|
| 588 |
+
|
| 589 |
vamp_button = gr.Button("generate (vamp)!!!")
|
| 590 |
output_audio = gr.Audio(
|
| 591 |
label="output audio",
|
|
|
|
| 660 |
outputs=[thank_you, download_file]
|
| 661 |
)
|
| 662 |
|
| 663 |
+
# harp stuff
|
| 664 |
+
harp_inputs = [
|
| 665 |
+
input_audio,
|
| 666 |
+
beat_mask_width,
|
| 667 |
+
sampletemp,
|
| 668 |
+
]
|
| 669 |
+
|
| 670 |
+
build_endpoint(
|
| 671 |
+
inputs=harp_inputs,
|
| 672 |
+
output=output_audio,
|
| 673 |
+
process_fn=harp_vamp,
|
| 674 |
+
card=ModelCard(
|
| 675 |
+
name="vampnet",
|
| 676 |
+
description="Generate variations on music input, based on small prompts around the beat.",
|
| 677 |
+
author="Hugo Flores García",
|
| 678 |
+
tags=["music", "generative"]
|
| 679 |
+
),
|
| 680 |
+
visible=False
|
| 681 |
+
)
|
| 682 |
+
|
| 683 |
demo.launch()
|
conf/lora/lora.yml
CHANGED
|
@@ -9,9 +9,9 @@ val/AudioDataset.n_examples: 500
|
|
| 9 |
|
| 10 |
NoamScheduler.warmup: 500
|
| 11 |
|
| 12 |
-
batch_size:
|
| 13 |
num_workers: 7
|
| 14 |
-
save_iters: [10000, 20000, 30000, 40000, 50000]
|
| 15 |
sample_freq: 1000
|
| 16 |
val_freq: 500
|
| 17 |
|
|
|
|
| 9 |
|
| 10 |
NoamScheduler.warmup: 500
|
| 11 |
|
| 12 |
+
batch_size: 6
|
| 13 |
num_workers: 7
|
| 14 |
+
save_iters: [10000, 20000, 30000, 40000, 50000, 100000]
|
| 15 |
sample_freq: 1000
|
| 16 |
val_freq: 500
|
| 17 |
|
conf/vampnet.yml
CHANGED
|
@@ -32,7 +32,7 @@ VampNet.n_heads: 20
|
|
| 32 |
VampNet.flash_attn: false
|
| 33 |
VampNet.dropout: 0.1
|
| 34 |
|
| 35 |
-
AudioLoader.relative_path:
|
| 36 |
AudioDataset.loudness_cutoff: -30.0
|
| 37 |
AudioDataset.without_replacement: true
|
| 38 |
AudioLoader.shuffle: true
|
|
|
|
| 32 |
VampNet.flash_attn: false
|
| 33 |
VampNet.dropout: 0.1
|
| 34 |
|
| 35 |
+
AudioLoader.relative_path: ""
|
| 36 |
AudioDataset.loudness_cutoff: -30.0
|
| 37 |
AudioDataset.without_replacement: true
|
| 38 |
AudioLoader.shuffle: true
|
scripts/exp/train.py
CHANGED
|
@@ -224,7 +224,7 @@ def train_loop(state: State, batch: dict, accel: Accelerator):
|
|
| 224 |
|
| 225 |
dtype = torch.bfloat16 if accel.amp else None
|
| 226 |
with accel.autocast(dtype=dtype):
|
| 227 |
-
z_hat = state.model(z_mask_latent
|
| 228 |
|
| 229 |
target = codebook_flatten(
|
| 230 |
z[:, vn.n_conditioning_codebooks :, :],
|
|
@@ -289,7 +289,7 @@ def val_loop(state: State, batch: dict, accel: Accelerator):
|
|
| 289 |
|
| 290 |
z_mask_latent = vn.embedding.from_codes(z_mask, state.codec)
|
| 291 |
|
| 292 |
-
z_hat = state.model(z_mask_latent
|
| 293 |
|
| 294 |
target = codebook_flatten(
|
| 295 |
z[:, vn.n_conditioning_codebooks :, :],
|
|
@@ -408,19 +408,19 @@ def save_imputation(state, z, val_idx, writer):
|
|
| 408 |
|
| 409 |
for i in range(len(val_idx)):
|
| 410 |
imputed_noisy[i].cpu().write_audio_to_tb(
|
| 411 |
-
f"
|
| 412 |
writer,
|
| 413 |
step=state.tracker.step,
|
| 414 |
plot_fn=None,
|
| 415 |
)
|
| 416 |
imputed[i].cpu().write_audio_to_tb(
|
| 417 |
-
f"
|
| 418 |
writer,
|
| 419 |
step=state.tracker.step,
|
| 420 |
plot_fn=None,
|
| 421 |
)
|
| 422 |
imputed_true[i].cpu().write_audio_to_tb(
|
| 423 |
-
f"
|
| 424 |
writer,
|
| 425 |
step=state.tracker.step,
|
| 426 |
plot_fn=None,
|
|
@@ -450,7 +450,7 @@ def save_samples(state: State, val_idx: int, writer: SummaryWriter):
|
|
| 450 |
|
| 451 |
z_mask_latent = vn.embedding.from_codes(z_mask, state.codec)
|
| 452 |
|
| 453 |
-
z_hat = state.model(z_mask_latent
|
| 454 |
|
| 455 |
z_pred = torch.softmax(z_hat, dim=1).argmax(dim=1)
|
| 456 |
z_pred = codebook_unflatten(z_pred, n_c=vn.n_predict_codebooks)
|
|
@@ -469,7 +469,7 @@ def save_samples(state: State, val_idx: int, writer: SummaryWriter):
|
|
| 469 |
}
|
| 470 |
for k, v in audio_dict.items():
|
| 471 |
v.cpu().write_audio_to_tb(
|
| 472 |
-
f"
|
| 473 |
writer,
|
| 474 |
step=state.tracker.step,
|
| 475 |
plot_fn=None,
|
|
|
|
| 224 |
|
| 225 |
dtype = torch.bfloat16 if accel.amp else None
|
| 226 |
with accel.autocast(dtype=dtype):
|
| 227 |
+
z_hat = state.model(z_mask_latent)
|
| 228 |
|
| 229 |
target = codebook_flatten(
|
| 230 |
z[:, vn.n_conditioning_codebooks :, :],
|
|
|
|
| 289 |
|
| 290 |
z_mask_latent = vn.embedding.from_codes(z_mask, state.codec)
|
| 291 |
|
| 292 |
+
z_hat = state.model(z_mask_latent)
|
| 293 |
|
| 294 |
target = codebook_flatten(
|
| 295 |
z[:, vn.n_conditioning_codebooks :, :],
|
|
|
|
| 408 |
|
| 409 |
for i in range(len(val_idx)):
|
| 410 |
imputed_noisy[i].cpu().write_audio_to_tb(
|
| 411 |
+
f"inpainted_prompt/{i}",
|
| 412 |
writer,
|
| 413 |
step=state.tracker.step,
|
| 414 |
plot_fn=None,
|
| 415 |
)
|
| 416 |
imputed[i].cpu().write_audio_to_tb(
|
| 417 |
+
f"inpainted_middle/{i}",
|
| 418 |
writer,
|
| 419 |
step=state.tracker.step,
|
| 420 |
plot_fn=None,
|
| 421 |
)
|
| 422 |
imputed_true[i].cpu().write_audio_to_tb(
|
| 423 |
+
f"reconstructed/{i}",
|
| 424 |
writer,
|
| 425 |
step=state.tracker.step,
|
| 426 |
plot_fn=None,
|
|
|
|
| 450 |
|
| 451 |
z_mask_latent = vn.embedding.from_codes(z_mask, state.codec)
|
| 452 |
|
| 453 |
+
z_hat = state.model(z_mask_latent)
|
| 454 |
|
| 455 |
z_pred = torch.softmax(z_hat, dim=1).argmax(dim=1)
|
| 456 |
z_pred = codebook_unflatten(z_pred, n_c=vn.n_predict_codebooks)
|
|
|
|
| 469 |
}
|
| 470 |
for k, v in audio_dict.items():
|
| 471 |
v.cpu().write_audio_to_tb(
|
| 472 |
+
f"onestep/_{i}.r={r[i]:0.2f}/{k}",
|
| 473 |
writer,
|
| 474 |
step=state.tracker.step,
|
| 475 |
plot_fn=None,
|
scripts/utils/{augment.py → data/augment.py}
RENAMED
|
@@ -64,4 +64,4 @@ if __name__ == "__main__":
|
|
| 64 |
args = argbind.parse_args()
|
| 65 |
|
| 66 |
with argbind.scope(args):
|
| 67 |
-
augment()
|
|
|
|
| 64 |
args = argbind.parse_args()
|
| 65 |
|
| 66 |
with argbind.scope(args):
|
| 67 |
+
augment()
|
scripts/utils/{maestro-reorg.py → data/maestro-reorg.py}
RENAMED
|
File without changes
|
scripts/utils/gtzan_embeddings.py
ADDED
|
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
TODO: train a linear probe
|
| 3 |
+
usage:
|
| 4 |
+
python gtzan_embeddings.py --args.load conf/interface.yml --Interface.device cuda --path_to_gtzan /path/to/gtzan/genres_original --output_dir /path/to/output
|
| 5 |
+
"""
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from typing import List
|
| 8 |
+
|
| 9 |
+
import audiotools as at
|
| 10 |
+
from audiotools import AudioSignal
|
| 11 |
+
import argbind
|
| 12 |
+
import torch
|
| 13 |
+
import numpy as np
|
| 14 |
+
import zipfile
|
| 15 |
+
import json
|
| 16 |
+
|
| 17 |
+
from vampnet.interface import Interface
|
| 18 |
+
import tqdm
|
| 19 |
+
|
| 20 |
+
# bind the Interface to argbind
|
| 21 |
+
Interface = argbind.bind(Interface)
|
| 22 |
+
|
| 23 |
+
DEBUG = False
|
| 24 |
+
|
| 25 |
+
def smart_plotly_export(fig, save_path):
|
| 26 |
+
img_format = save_path.split('.')[-1]
|
| 27 |
+
if img_format == 'html':
|
| 28 |
+
fig.write_html(save_path)
|
| 29 |
+
elif img_format == 'bytes':
|
| 30 |
+
return fig.to_image(format='png')
|
| 31 |
+
#TODO: come back and make this prettier
|
| 32 |
+
elif img_format == 'numpy':
|
| 33 |
+
import io
|
| 34 |
+
from PIL import Image
|
| 35 |
+
|
| 36 |
+
def plotly_fig2array(fig):
|
| 37 |
+
#convert Plotly fig to an array
|
| 38 |
+
fig_bytes = fig.to_image(format="png", width=1200, height=700)
|
| 39 |
+
buf = io.BytesIO(fig_bytes)
|
| 40 |
+
img = Image.open(buf)
|
| 41 |
+
return np.asarray(img)
|
| 42 |
+
|
| 43 |
+
return plotly_fig2array(fig)
|
| 44 |
+
elif img_format == 'jpeg' or 'png' or 'webp':
|
| 45 |
+
fig.write_image(save_path)
|
| 46 |
+
else:
|
| 47 |
+
raise ValueError("invalid image format")
|
| 48 |
+
|
| 49 |
+
def dim_reduce(emb, labels, save_path, n_components=3, method='tsne', title=''):
|
| 50 |
+
"""
|
| 51 |
+
dimensionality reduction for visualization!
|
| 52 |
+
saves an html plotly figure to save_path
|
| 53 |
+
parameters:
|
| 54 |
+
emb (np.ndarray): the samples to be reduces with shape (samples, features)
|
| 55 |
+
labels (list): list of labels for embedding
|
| 56 |
+
save_path (str): path where u wanna save ur figure
|
| 57 |
+
method (str): umap, tsne, or pca
|
| 58 |
+
title (str): title for ur figure
|
| 59 |
+
returns:
|
| 60 |
+
proj (np.ndarray): projection vector with shape (samples, dimensions)
|
| 61 |
+
"""
|
| 62 |
+
import pandas as pd
|
| 63 |
+
import plotly.express as px
|
| 64 |
+
if method == 'umap':
|
| 65 |
+
reducer = umap.UMAP(n_components=n_components)
|
| 66 |
+
elif method == 'tsne':
|
| 67 |
+
from sklearn.manifold import TSNE
|
| 68 |
+
reducer = TSNE(n_components=n_components)
|
| 69 |
+
elif method == 'pca':
|
| 70 |
+
from sklearn.decomposition import PCA
|
| 71 |
+
reducer = PCA(n_components=n_components)
|
| 72 |
+
else:
|
| 73 |
+
raise ValueError
|
| 74 |
+
|
| 75 |
+
proj = reducer.fit_transform(emb)
|
| 76 |
+
|
| 77 |
+
if n_components == 2:
|
| 78 |
+
df = pd.DataFrame(dict(
|
| 79 |
+
x=proj[:, 0],
|
| 80 |
+
y=proj[:, 1],
|
| 81 |
+
instrument=labels
|
| 82 |
+
))
|
| 83 |
+
fig = px.scatter(df, x='x', y='y', color='instrument',
|
| 84 |
+
title=title+f"_{method}")
|
| 85 |
+
|
| 86 |
+
elif n_components == 3:
|
| 87 |
+
df = pd.DataFrame(dict(
|
| 88 |
+
x=proj[:, 0],
|
| 89 |
+
y=proj[:, 1],
|
| 90 |
+
z=proj[:, 2],
|
| 91 |
+
instrument=labels
|
| 92 |
+
))
|
| 93 |
+
fig = px.scatter_3d(df, x='x', y='y', z='z',
|
| 94 |
+
color='instrument',
|
| 95 |
+
title=title)
|
| 96 |
+
else:
|
| 97 |
+
raise ValueError("cant plot more than 3 components")
|
| 98 |
+
|
| 99 |
+
fig.update_traces(marker=dict(size=6,
|
| 100 |
+
line=dict(width=1,
|
| 101 |
+
color='DarkSlateGrey')),
|
| 102 |
+
selector=dict(mode='markers'))
|
| 103 |
+
|
| 104 |
+
return smart_plotly_export(fig, save_path)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
# per JukeMIR, we want the emebddings from the middle layer?
|
| 109 |
+
def vampnet_embed(sig: AudioSignal, interface: Interface, layer=10):
|
| 110 |
+
with torch.inference_mode():
|
| 111 |
+
# preprocess the signal
|
| 112 |
+
sig = interface.preprocess(sig)
|
| 113 |
+
|
| 114 |
+
# get the coarse vampnet model
|
| 115 |
+
vampnet = interface.coarse
|
| 116 |
+
|
| 117 |
+
# get the tokens
|
| 118 |
+
z = interface.encode(sig)[:, :vampnet.n_codebooks, :]
|
| 119 |
+
z_latents = vampnet.embedding.from_codes(z, interface.codec)
|
| 120 |
+
|
| 121 |
+
# do a forward pass through the model, get the embeddings
|
| 122 |
+
_z, embeddings = vampnet(z_latents, return_activations=True)
|
| 123 |
+
# print(f"got embeddings with shape {embeddings.shape}")
|
| 124 |
+
# [layer, batch, time, n_dims]
|
| 125 |
+
# [20, 1, 600ish, 768]
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
# squeeze batch dim (1 bc layer should be dim 0)
|
| 129 |
+
assert embeddings.shape[1] == 1, f"expected batch dim to be 1, got {embeddings.shape[0]}"
|
| 130 |
+
embeddings = embeddings.squeeze(1)
|
| 131 |
+
|
| 132 |
+
num_layers = embeddings.shape[0]
|
| 133 |
+
assert layer < num_layers, f"layer {layer} is out of bounds for model with {num_layers} layers"
|
| 134 |
+
|
| 135 |
+
# do meanpooling over the time dimension
|
| 136 |
+
embeddings = embeddings.mean(dim=-2)
|
| 137 |
+
# [20, 768]
|
| 138 |
+
|
| 139 |
+
# return the embeddings
|
| 140 |
+
return embeddings
|
| 141 |
+
|
| 142 |
+
from dataclasses import dataclass, fields
|
| 143 |
+
@dataclass
|
| 144 |
+
class Embedding:
|
| 145 |
+
genre: str
|
| 146 |
+
filename: str
|
| 147 |
+
embedding: np.ndarray
|
| 148 |
+
|
| 149 |
+
def save(self, path):
|
| 150 |
+
"""Save the Embedding object to a given path as a zip file."""
|
| 151 |
+
with zipfile.ZipFile(path, 'w') as archive:
|
| 152 |
+
|
| 153 |
+
# Save numpy array
|
| 154 |
+
with archive.open('embedding.npy', 'w') as f:
|
| 155 |
+
np.save(f, self.embedding)
|
| 156 |
+
|
| 157 |
+
# Save non-numpy data as json
|
| 158 |
+
non_numpy_data = {f.name: getattr(self, f.name) for f in fields(self) if f.name != 'embedding'}
|
| 159 |
+
with archive.open('data.json', 'w') as f:
|
| 160 |
+
f.write(json.dumps(non_numpy_data).encode('utf-8'))
|
| 161 |
+
|
| 162 |
+
@classmethod
|
| 163 |
+
def load(cls, path):
|
| 164 |
+
"""Load the Embedding object from a given zip path."""
|
| 165 |
+
with zipfile.ZipFile(path, 'r') as archive:
|
| 166 |
+
|
| 167 |
+
# Load numpy array
|
| 168 |
+
with archive.open('embedding.npy') as f:
|
| 169 |
+
embedding = np.load(f)
|
| 170 |
+
|
| 171 |
+
# Load non-numpy data from json
|
| 172 |
+
with archive.open('data.json') as f:
|
| 173 |
+
data = json.loads(f.read().decode('utf-8'))
|
| 174 |
+
|
| 175 |
+
return cls(embedding=embedding, **data)
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
@argbind.bind(without_prefix=True)
|
| 179 |
+
def main(
|
| 180 |
+
path_to_gtzan: str = None,
|
| 181 |
+
cache_dir: str = "./.gtzan_emb_cache",
|
| 182 |
+
output_dir: str = "./gtzan_vampnet_embeddings",
|
| 183 |
+
layers: List[int] = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
|
| 184 |
+
):
|
| 185 |
+
path_to_gtzan = Path(path_to_gtzan)
|
| 186 |
+
assert path_to_gtzan.exists(), f"{path_to_gtzan} does not exist"
|
| 187 |
+
|
| 188 |
+
cache_dir = Path(cache_dir)
|
| 189 |
+
output_dir = Path(output_dir)
|
| 190 |
+
output_dir.mkdir(exist_ok=True, parents=True)
|
| 191 |
+
|
| 192 |
+
# load our interface
|
| 193 |
+
# argbind will automatically load the default config,
|
| 194 |
+
interface = Interface()
|
| 195 |
+
|
| 196 |
+
# gtzan should have a folder for each genre, so let's get the list of genres
|
| 197 |
+
genres = [Path(x).name for x in path_to_gtzan.iterdir() if x.is_dir()]
|
| 198 |
+
print(f"Found {len(genres)} genres")
|
| 199 |
+
print(f"genres: {genres}")
|
| 200 |
+
|
| 201 |
+
# collect audio files, genres, and embeddings
|
| 202 |
+
data = []
|
| 203 |
+
for genre in genres:
|
| 204 |
+
audio_files = list(at.util.find_audio(path_to_gtzan / genre))
|
| 205 |
+
print(f"Found {len(audio_files)} audio files for genre {genre}")
|
| 206 |
+
|
| 207 |
+
for audio_file in tqdm.tqdm(audio_files, desc=f"embedding genre {genre}"):
|
| 208 |
+
# check if we have a cached embedding for this file
|
| 209 |
+
cached_path = (cache_dir / f"{genre}_{audio_file.stem}.emb")
|
| 210 |
+
if cached_path.exists():
|
| 211 |
+
# if so, load it
|
| 212 |
+
if DEBUG:
|
| 213 |
+
print(f"loading cached embedding for {cached_path.stem}")
|
| 214 |
+
embedding = Embedding.load(cached_path)
|
| 215 |
+
data.append(embedding)
|
| 216 |
+
else:
|
| 217 |
+
try:
|
| 218 |
+
sig = AudioSignal(audio_file)
|
| 219 |
+
except Exception as e:
|
| 220 |
+
print(f"failed to load {audio_file.name} with error {e}")
|
| 221 |
+
print(f"skipping {audio_file.name}")
|
| 222 |
+
continue
|
| 223 |
+
|
| 224 |
+
# gets the embedding
|
| 225 |
+
emb = vampnet_embed(sig, interface).cpu().numpy()
|
| 226 |
+
|
| 227 |
+
# create an embedding we can save/load
|
| 228 |
+
embedding = Embedding(
|
| 229 |
+
genre=genre,
|
| 230 |
+
filename=audio_file.name,
|
| 231 |
+
embedding=emb
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# cache the embeddings
|
| 235 |
+
cached_path.parent.mkdir(exist_ok=True, parents=True)
|
| 236 |
+
embedding.save(cached_path)
|
| 237 |
+
|
| 238 |
+
# now, let's do a dim reduction on the embeddings
|
| 239 |
+
# and visualize them.
|
| 240 |
+
|
| 241 |
+
# collect a list of embeddings and labels
|
| 242 |
+
embeddings = [d.embedding for d in data]
|
| 243 |
+
labels = [d.genre for d in data]
|
| 244 |
+
|
| 245 |
+
# convert the embeddings to a numpy array
|
| 246 |
+
embeddings = np.stack(embeddings)
|
| 247 |
+
|
| 248 |
+
# do dimensionality reduction for each layer we're given
|
| 249 |
+
for layer in tqdm.tqdm(layers, desc="dim reduction"):
|
| 250 |
+
dim_reduce(
|
| 251 |
+
embeddings[:, layer, :], labels,
|
| 252 |
+
save_path=str(output_dir / f'vampnet-gtzan-layer={layer}.html'),
|
| 253 |
+
n_components=2, method='tsne',
|
| 254 |
+
title=f'vampnet-gtzan-layer={layer}'
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
if __name__ == "__main__":
|
| 261 |
+
args = argbind.parse_args()
|
| 262 |
+
with argbind.scope(args):
|
| 263 |
+
main()
|
vampnet/modules/transformer.py
CHANGED
|
@@ -410,7 +410,9 @@ class TransformerStack(nn.Module):
|
|
| 410 |
def subsequent_mask(self, size):
|
| 411 |
return torch.ones(1, size, size).tril().bool()
|
| 412 |
|
| 413 |
-
def forward(self, x, x_mask, cond=None, src=None, src_mask=None
|
|
|
|
|
|
|
| 414 |
"""Computes a full transformer stack
|
| 415 |
Parameters
|
| 416 |
----------
|
|
@@ -437,6 +439,8 @@ class TransformerStack(nn.Module):
|
|
| 437 |
encoder_decoder_position_bias = None
|
| 438 |
|
| 439 |
# Compute transformer layers
|
|
|
|
|
|
|
| 440 |
for layer in self.layers:
|
| 441 |
x, position_bias, encoder_decoder_position_bias = layer(
|
| 442 |
x=x,
|
|
@@ -447,8 +451,15 @@ class TransformerStack(nn.Module):
|
|
| 447 |
position_bias=position_bias,
|
| 448 |
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
| 449 |
)
|
|
|
|
|
|
|
| 450 |
|
| 451 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 452 |
|
| 453 |
|
| 454 |
class VampNet(at.ml.BaseModel):
|
|
@@ -456,7 +467,7 @@ class VampNet(at.ml.BaseModel):
|
|
| 456 |
self,
|
| 457 |
n_heads: int = 20,
|
| 458 |
n_layers: int = 16,
|
| 459 |
-
r_cond_dim: int =
|
| 460 |
n_codebooks: int = 9,
|
| 461 |
n_conditioning_codebooks: int = 0,
|
| 462 |
latent_dim: int = 8,
|
|
@@ -467,6 +478,7 @@ class VampNet(at.ml.BaseModel):
|
|
| 467 |
dropout: float = 0.1
|
| 468 |
):
|
| 469 |
super().__init__()
|
|
|
|
| 470 |
self.n_heads = n_heads
|
| 471 |
self.n_layers = n_layers
|
| 472 |
self.r_cond_dim = r_cond_dim
|
|
@@ -513,21 +525,25 @@ class VampNet(at.ml.BaseModel):
|
|
| 513 |
),
|
| 514 |
)
|
| 515 |
|
| 516 |
-
def forward(self, x,
|
| 517 |
x = self.embedding(x)
|
| 518 |
x_mask = torch.ones_like(x, dtype=torch.bool)[:, :1, :].squeeze(1)
|
| 519 |
|
| 520 |
-
cond = self.r_embed(cond)
|
| 521 |
-
|
| 522 |
x = rearrange(x, "b d n -> b n d")
|
| 523 |
-
out = self.transformer(x=x, x_mask=x_mask,
|
|
|
|
|
|
|
|
|
|
| 524 |
out = rearrange(out, "b n d -> b d n")
|
| 525 |
|
| 526 |
-
out = self.classifier(out, cond
|
| 527 |
|
| 528 |
out = rearrange(out, "b (p c) t -> b p (t c)", c=self.n_predict_codebooks)
|
| 529 |
|
| 530 |
-
|
|
|
|
|
|
|
|
|
|
| 531 |
|
| 532 |
def r_embed(self, r, max_positions=10000):
|
| 533 |
if self.r_cond_dim > 0:
|
|
@@ -589,7 +605,7 @@ class VampNet(at.ml.BaseModel):
|
|
| 589 |
top_p=None,
|
| 590 |
return_signal=True,
|
| 591 |
seed: int = None,
|
| 592 |
-
sample_cutoff: float = 0
|
| 593 |
):
|
| 594 |
if seed is not None:
|
| 595 |
at.util.seed(seed)
|
|
@@ -660,7 +676,7 @@ class VampNet(at.ml.BaseModel):
|
|
| 660 |
|
| 661 |
# infer from latents
|
| 662 |
# NOTE: this collapses the codebook dimension into the sequence dimension
|
| 663 |
-
logits = self.forward(latents
|
| 664 |
logits = logits.permute(0, 2, 1) # b, seq, prob
|
| 665 |
b = logits.shape[0]
|
| 666 |
|
|
@@ -921,7 +937,7 @@ if __name__ == "__main__":
|
|
| 921 |
z_mask_latent = torch.rand(
|
| 922 |
batch_size, model.latent_dim * model.n_codebooks, seq_len
|
| 923 |
).to(device)
|
| 924 |
-
z_hat = model(z_mask_latent
|
| 925 |
|
| 926 |
pred = z_hat.argmax(dim=1)
|
| 927 |
pred = model.embedding.unflatten(pred, n_codebooks=model.n_predict_codebooks)
|
|
|
|
| 410 |
def subsequent_mask(self, size):
|
| 411 |
return torch.ones(1, size, size).tril().bool()
|
| 412 |
|
| 413 |
+
def forward(self, x, x_mask, cond=None, src=None, src_mask=None,
|
| 414 |
+
return_activations: bool = False
|
| 415 |
+
):
|
| 416 |
"""Computes a full transformer stack
|
| 417 |
Parameters
|
| 418 |
----------
|
|
|
|
| 439 |
encoder_decoder_position_bias = None
|
| 440 |
|
| 441 |
# Compute transformer layers
|
| 442 |
+
if return_activations:
|
| 443 |
+
activations = []
|
| 444 |
for layer in self.layers:
|
| 445 |
x, position_bias, encoder_decoder_position_bias = layer(
|
| 446 |
x=x,
|
|
|
|
| 451 |
position_bias=position_bias,
|
| 452 |
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
| 453 |
)
|
| 454 |
+
if return_activations:
|
| 455 |
+
activations.append(x.detach())
|
| 456 |
|
| 457 |
+
|
| 458 |
+
out = self.norm(x) if self.norm is not None else x
|
| 459 |
+
if return_activations:
|
| 460 |
+
return out, torch.stack(activations)
|
| 461 |
+
else:
|
| 462 |
+
return out
|
| 463 |
|
| 464 |
|
| 465 |
class VampNet(at.ml.BaseModel):
|
|
|
|
| 467 |
self,
|
| 468 |
n_heads: int = 20,
|
| 469 |
n_layers: int = 16,
|
| 470 |
+
r_cond_dim: int = 0,
|
| 471 |
n_codebooks: int = 9,
|
| 472 |
n_conditioning_codebooks: int = 0,
|
| 473 |
latent_dim: int = 8,
|
|
|
|
| 478 |
dropout: float = 0.1
|
| 479 |
):
|
| 480 |
super().__init__()
|
| 481 |
+
assert r_cond_dim == 0, f"r_cond_dim must be 0 (not supported), but got {r_cond_dim}"
|
| 482 |
self.n_heads = n_heads
|
| 483 |
self.n_layers = n_layers
|
| 484 |
self.r_cond_dim = r_cond_dim
|
|
|
|
| 525 |
),
|
| 526 |
)
|
| 527 |
|
| 528 |
+
def forward(self, x, return_activations: bool = False):
|
| 529 |
x = self.embedding(x)
|
| 530 |
x_mask = torch.ones_like(x, dtype=torch.bool)[:, :1, :].squeeze(1)
|
| 531 |
|
|
|
|
|
|
|
| 532 |
x = rearrange(x, "b d n -> b n d")
|
| 533 |
+
out = self.transformer(x=x, x_mask=x_mask, return_activations=return_activations)
|
| 534 |
+
if return_activations:
|
| 535 |
+
out, activations = out
|
| 536 |
+
|
| 537 |
out = rearrange(out, "b n d -> b d n")
|
| 538 |
|
| 539 |
+
out = self.classifier(out, None) # no cond here!
|
| 540 |
|
| 541 |
out = rearrange(out, "b (p c) t -> b p (t c)", c=self.n_predict_codebooks)
|
| 542 |
|
| 543 |
+
if return_activations:
|
| 544 |
+
return out, activations
|
| 545 |
+
else:
|
| 546 |
+
return out
|
| 547 |
|
| 548 |
def r_embed(self, r, max_positions=10000):
|
| 549 |
if self.r_cond_dim > 0:
|
|
|
|
| 605 |
top_p=None,
|
| 606 |
return_signal=True,
|
| 607 |
seed: int = None,
|
| 608 |
+
sample_cutoff: float = 1.0,
|
| 609 |
):
|
| 610 |
if seed is not None:
|
| 611 |
at.util.seed(seed)
|
|
|
|
| 676 |
|
| 677 |
# infer from latents
|
| 678 |
# NOTE: this collapses the codebook dimension into the sequence dimension
|
| 679 |
+
logits = self.forward(latents) # b, prob, seq
|
| 680 |
logits = logits.permute(0, 2, 1) # b, seq, prob
|
| 681 |
b = logits.shape[0]
|
| 682 |
|
|
|
|
| 937 |
z_mask_latent = torch.rand(
|
| 938 |
batch_size, model.latent_dim * model.n_codebooks, seq_len
|
| 939 |
).to(device)
|
| 940 |
+
z_hat = model(z_mask_latent)
|
| 941 |
|
| 942 |
pred = z_hat.argmax(dim=1)
|
| 943 |
pred = model.embedding.unflatten(pred, n_codebooks=model.n_predict_codebooks)
|