Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,21 +2,46 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
from transformers import ColPaliForRetrieval, ColPaliProcessor
|
|
|
|
| 5 |
|
| 6 |
model_name = "vidore/colpali-v1.3-hf"
|
| 7 |
model = ColPaliForRetrieval.from_pretrained(model_name, torch_dtype=torch.float32).eval()
|
| 8 |
processor = ColPaliProcessor.from_pretrained(model_name)
|
| 9 |
|
| 10 |
def process_image(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
|
|
|
| 12 |
with torch.no_grad():
|
| 13 |
outputs = model(**inputs)
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
|
|
|
| 16 |
demo = gr.Interface(
|
| 17 |
fn=process_image,
|
| 18 |
inputs=gr.Image(type="pil"),
|
| 19 |
-
outputs=
|
|
|
|
|
|
|
| 20 |
)
|
| 21 |
|
|
|
|
| 22 |
demo.launch()
|
|
|
|
| 2 |
import torch
|
| 3 |
from PIL import Image
|
| 4 |
from transformers import ColPaliForRetrieval, ColPaliProcessor
|
| 5 |
+
import numpy as np
|
| 6 |
|
| 7 |
model_name = "vidore/colpali-v1.3-hf"
|
| 8 |
model = ColPaliForRetrieval.from_pretrained(model_name, torch_dtype=torch.float32).eval()
|
| 9 |
processor = ColPaliProcessor.from_pretrained(model_name)
|
| 10 |
|
| 11 |
def process_image(image):
|
| 12 |
+
# Ensure the image is in RGB format
|
| 13 |
+
image = image.convert('RGB')
|
| 14 |
+
|
| 15 |
+
# Process the image
|
| 16 |
inputs = processor(images=image, return_tensors="pt")
|
| 17 |
+
|
| 18 |
+
# Generate embeddings
|
| 19 |
with torch.no_grad():
|
| 20 |
outputs = model(**inputs)
|
| 21 |
+
|
| 22 |
+
# Extract embeddings and convert to list
|
| 23 |
+
embeddings = outputs.embeddings.squeeze().cpu().numpy().tolist()
|
| 24 |
+
|
| 25 |
+
# Truncate the embeddings for display purposes
|
| 26 |
+
truncated_embeddings = embeddings[:10] # Show only first 10 values
|
| 27 |
+
|
| 28 |
+
# Prepare the output
|
| 29 |
+
output = {
|
| 30 |
+
"embedding_sample": truncated_embeddings,
|
| 31 |
+
"embedding_length": len(embeddings),
|
| 32 |
+
"embedding_shape": list(np.array(embeddings).shape)
|
| 33 |
+
}
|
| 34 |
+
|
| 35 |
+
return output
|
| 36 |
|
| 37 |
+
# Create Gradio interface
|
| 38 |
demo = gr.Interface(
|
| 39 |
fn=process_image,
|
| 40 |
inputs=gr.Image(type="pil"),
|
| 41 |
+
outputs=gr.JSON(),
|
| 42 |
+
title="ColPali Image Embedding Generator",
|
| 43 |
+
description="Upload an image to generate its embedding using the ColPali model."
|
| 44 |
)
|
| 45 |
|
| 46 |
+
# Launch the interface
|
| 47 |
demo.launch()
|