File size: 30,096 Bytes
9fa4d05
 
 
 
 
acf56d2
9fa4d05
 
 
acf56d2
9fa4d05
 
 
 
 
 
 
 
 
 
 
acf56d2
9fa4d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb68449
9fa4d05
 
 
 
 
fb68449
 
 
9fa4d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb68449
9fa4d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afd038c
9fa4d05
 
 
 
 
 
 
 
afd038c
9fa4d05
 
 
 
 
 
 
 
 
 
 
 
afd038c
9fa4d05
 
 
 
 
afd038c
9fa4d05
 
 
 
 
 
afd038c
9fa4d05
 
 
 
 
afd038c
9fa4d05
 
 
 
 
 
 
 
 
afd038c
9fa4d05
 
 
 
 
 
 
 
afd038c
9fa4d05
 
 
 
 
 
 
afd038c
9fa4d05
 
 
 
afd038c
9fa4d05
 
 
 
 
 
 
 
 
 
afd038c
9fa4d05
 
 
 
 
afd038c
9fa4d05
 
 
 
 
afd038c
9fa4d05
 
 
 
 
afd038c
9fa4d05
 
 
 
 
 
afd038c
9fa4d05
 
 
 
 
 
 
 
afd038c
9fa4d05
 
 
 
 
 
 
afd038c
9fa4d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb68449
9fa4d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb68449
9fa4d05
 
 
 
 
 
 
 
 
 
 
 
fb68449
9fa4d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afd038c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
#!/usr/bin/env python3
import os
import shutil
import uuid
import json
import gradio as gr
import torch
from PIL import Image
import time

# Import pipeline modules
from utils.transcribe import transcribe_audio, list_available_whisper_models
from utils.segment import segment_lyrics
from utils.prompt_gen import generate_scene_prompts, list_available_llm_models
from utils.video_gen import (
    create_video_segments, 
    list_available_image_models,
    list_available_video_models,
    preview_image_generation
)
from utils.glue import stitch_and_caption

# Create output directories if not existing
os.makedirs("templates", exist_ok=True)
os.makedirs("templates/minimalist", exist_ok=True)
os.makedirs("tmp", exist_ok=True)

# Load available model options
WHISPER_MODELS = list_available_whisper_models()
DEFAULT_WHISPER_MODEL = "medium.en"

LLM_MODELS = list_available_llm_models()
DEFAULT_LLM_MODEL = "TheBloke/Mixtral-8x7B-Instruct-v0.1-GPTQ"

IMAGE_MODELS = list_available_image_models()
DEFAULT_IMAGE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"

VIDEO_MODELS = list_available_video_models()
DEFAULT_VIDEO_MODEL = "stabilityai/stable-video-diffusion-img2vid-xt"

# Default prompt template
DEFAULT_PROMPT_TEMPLATE = """You are a cinematographer generating a scene for a music video.
Describe one vivid visual scene ({max_words} words max) that matches the mood and imagery of these lyrics.
Focus on setting, atmosphere, lighting, and framing. Do not mention the artist or singing.
Use only {max_sentences} sentence(s).

Lyrics: "{lyrics}"

Scene description:"""

# Prepare style template options by scanning templates/ directory
TEMPLATE_DIR = "templates"
template_choices = []
for name in os.listdir(TEMPLATE_DIR):
    if os.path.isdir(os.path.join(TEMPLATE_DIR, name)):
        template_choices.append(name)
template_choices = sorted(template_choices)
DEFAULT_TEMPLATE = "minimalist" if "minimalist" in template_choices else (template_choices[0] if template_choices else None)

# Advanced settings defaults
DEFAULT_RESOLUTION = "1024x576"  # default resolution
DEFAULT_FPS_MODE = "Auto"       # auto-match lyric timing
DEFAULT_SEED = 0                # 0 means random seed
DEFAULT_MAX_WORDS = 30          # default word limit for scene descriptions
DEFAULT_MAX_SENTENCES = 1       # default sentence limit
DEFAULT_CROSSFADE = 0.25        # default crossfade duration
DEFAULT_STYLE_SUFFIX = "cinematic, 35 mm, shallow depth of field, film grain"

# Mode for image generation
IMAGE_MODES = ["Independent", "Consistent (Img2Img)"]
DEFAULT_IMAGE_MODE = "Independent"

def process_audio(
    audio_path, 
    whisper_model, 
    llm_model,
    image_model,
    video_model,
    template_name, 
    resolution, 
    fps_mode, 
    seed,
    prompt_template,
    max_words,
    max_sentences,
    style_suffix,
    image_mode,
    strength,
    crossfade_duration
):
    """
    End-to-end processing function to generate the music video with kinetic subtitles.
    Returns final video file path for preview and download.
    """
    # Default progress function just prints to console
    def progress(percent, desc=""):
        print(f"Progress: {percent}% - {desc}")
    
    # Input validation
    if not audio_path or not os.path.exists(audio_path):
        raise ValueError("Please provide a valid audio file")
    
    if not template_name or template_name not in template_choices:
        template_name = DEFAULT_TEMPLATE or "minimalist"
        
    # Prepare a unique temp directory for this run (to avoid conflicts between parallel jobs)
    session_id = str(uuid.uuid4())[:8]
    work_dir = os.path.join("tmp", f"run_{session_id}")
    os.makedirs(work_dir, exist_ok=True)
    
    # Save parameter settings for debugging
    params = {
        "whisper_model": whisper_model,
        "llm_model": llm_model,
        "image_model": image_model,
        "video_model": video_model,
        "template": template_name,
        "resolution": resolution,
        "fps_mode": fps_mode,
        "seed": seed,
        "max_words": max_words,
        "max_sentences": max_sentences,
        "style_suffix": style_suffix,
        "image_mode": image_mode,
        "strength": strength,
        "crossfade_duration": crossfade_duration
    }
    with open(os.path.join(work_dir, "params.json"), "w") as f:
        json.dump(params, f, indent=2)
    
    try:
        # 1. Transcription
        progress(0, desc="Transcribing audio with Whisper...")
        try:
            result = transcribe_audio(audio_path, whisper_model)
            if not result or 'segments' not in result:
                raise ValueError("Transcription failed - no speech detected")
        except Exception as e:
            raise RuntimeError(f"Audio transcription failed: {str(e)}")
        
        progress(15, desc="Transcription completed. Segmenting lyrics...")
        
        # 2. Segmentation
        try:
            segments = segment_lyrics(result)
            if not segments:
                raise ValueError("No valid segments found in transcription")
        except Exception as e:
            raise RuntimeError(f"Audio segmentation failed: {str(e)}")
        
        progress(25, desc=f"Detected {len(segments)} lyric segments. Generating scene prompts...")
        
        # 3. Scene-prompt generation
        try:
            # Format the prompt template with the limits
            formatted_prompt_template = prompt_template.format(
                max_words=max_words,
                max_sentences=max_sentences,
                lyrics="{lyrics}"  # This placeholder will be filled for each segment
            )
            
            prompts = generate_scene_prompts(
                segments, 
                llm_model=llm_model,
                prompt_template=formatted_prompt_template,
                style_suffix=style_suffix
            )
            
            if len(prompts) != len(segments):
                raise ValueError(f"Prompt generation mismatch: {len(prompts)} prompts for {len(segments)} segments")
                
        except Exception as e:
            raise RuntimeError(f"Scene prompt generation failed: {str(e)}")
        
        # Save generated prompts for display or debugging
        with open(os.path.join(work_dir, "prompts.txt"), "w", encoding="utf-8") as f:
            for i, p in enumerate(prompts):
                f.write(f"Segment {i+1}: {p}\n")
        progress(35, desc="Scene prompts ready. Generating video segments...")
        
        # Parse resolution with validation
        try:
            if resolution and "x" in resolution.lower():
                width, height = map(int, resolution.lower().split("x"))
                if width <= 0 or height <= 0:
                    raise ValueError("Invalid resolution values")
            else:
                width, height = 1024, 576  # default high resolution
        except (ValueError, TypeError) as e:
            print(f"Warning: Invalid resolution '{resolution}', using default 1024x576")
            width, height = 1024, 576
        
        # Determine FPS handling
        fps_value = None
        dynamic_fps = True
        if fps_mode and fps_mode.lower() != "auto":
            try:
                fps_value = float(fps_mode)
                if fps_value <= 0:
                    raise ValueError("FPS must be positive")
                dynamic_fps = False
            except (ValueError, TypeError):
                print(f"Warning: Invalid FPS '{fps_mode}', using auto mode")
                fps_value = None
                dynamic_fps = True
        
        # 4. Image→video generation for each segment
        try:
            segment_videos = create_video_segments(
                segments, 
                prompts, 
                image_model=image_model,
                video_model=video_model,
                width=width, 
                height=height,
                dynamic_fps=dynamic_fps, 
                base_fps=fps_value, 
                seed=seed, 
                work_dir=work_dir,
                image_mode=image_mode,
                strength=strength,
                progress_callback=None
            )
            
            if not segment_videos:
                raise ValueError("No video segments were generated")
                
        except Exception as e:
            raise RuntimeError(f"Video generation failed: {str(e)}")
        
        progress(80, desc="Video segments generated. Stitching and adding subtitles...")
        
        # 5. Concatenation & audio syncing, plus kinetic subtitles overlay
        try:
            final_video_path = stitch_and_caption(
                segment_videos, 
                audio_path, 
                segments, 
                template_name, 
                work_dir=work_dir,
                crossfade_duration=crossfade_duration
            )
            
            if not final_video_path or not os.path.exists(final_video_path):
                raise ValueError("Final video file was not created")
                
        except Exception as e:
            raise RuntimeError(f"Video stitching and captioning failed: {str(e)}")
        
        progress(100, desc="βœ… Generation complete!")
        return final_video_path, work_dir
        
    except Exception as e:
        # Enhanced error reporting
        error_msg = str(e)
        if "CUDA" in error_msg or "GPU" in error_msg:
            error_msg += "\n\nπŸ’‘ Tip: This application requires a CUDA-compatible GPU with sufficient VRAM."
        elif "model" in error_msg.lower():
            error_msg += "\n\nπŸ’‘ Tip: Model loading failed. Check your internet connection and try again."
        elif "audio" in error_msg.lower():
            error_msg += "\n\nπŸ’‘ Tip: Please ensure your audio file is in a supported format (MP3, WAV, M4A)."
        
        print(f"Error during processing: {error_msg}")
        raise RuntimeError(error_msg)

# Define Gradio UI components
with gr.Blocks(title="Audio β†’ Kinetic-Subtitle Music Video", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🎡 Audio β†’ Kinetic-Subtitle Music Video
    
    Transform your audio tracks into dynamic music videos with AI-generated scenes and animated subtitles.
    
    **✨ Features:**
    - 🎀 **Whisper Transcription** - Accurate speech-to-text with word-level timing
    - 🧠 **AI Scene Generation** - LLM-powered visual descriptions from lyrics
    - 🎨 **Image & Video AI** - Stable Diffusion + Video Diffusion models
    - 🎬 **Kinetic Subtitles** - Animated text synchronized with audio
    - ⚑ **Fully Local** - No API keys required, runs on your GPU
    
    **πŸ“‹ Quick Start:**
    1. Upload an audio file (MP3, WAV, M4A)
    2. Choose your AI models (or keep defaults)
    3. Customize style and settings
    4. Click "Generate Music Video"
    """)
    
    # System requirements info
    with gr.Accordion("πŸ’» System Requirements & Tips", open=False):
        gr.Markdown("""
        **Hardware Requirements:**
        - NVIDIA GPU with 8GB+ VRAM (recommended: RTX 3080/4070 or better)
        - 16GB+ system RAM
        - Fast storage (SSD recommended)
        
        **Supported Audio Formats:**
        - MP3, WAV, M4A, FLAC, OGG
        - Recommended: Clear vocals, 30 seconds to 3 minutes
        
        **Performance Tips:**
        - Use lower resolution (512x288) for faster generation
        - Choose smaller models for quicker processing
        - Ensure stable power supply for GPU-intensive tasks
        """)
    
    # Main configuration
    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(
                label="🎡 Upload Audio Track", 
                type="filepath",
                info="Upload your music file. For best results, use clear audio with distinct vocals."
            )
        with gr.Column():
            # Quick settings panel
            gr.Markdown("### ⚑ Quick Settings")
            quick_quality = gr.Radio(
                choices=["Fast (512x288)", "Balanced (1024x576)", "High Quality (1280x720)"],
                value="Balanced (1024x576)",
                label="Quality Preset",
                info="Higher quality = better results but slower generation"
            )
    
    # Model selection tabs
    with gr.Tabs():
        with gr.TabItem("πŸ€– AI Models"):
            gr.Markdown("**Choose the AI models for each processing step:**")
            with gr.Row():
                with gr.Column():
                    whisper_dropdown = gr.Dropdown(
                        label="🎀 Transcription Model (Whisper)", 
                        choices=WHISPER_MODELS, 
                        value=DEFAULT_WHISPER_MODEL,
                        info="Larger models are more accurate but slower. 'medium.en' is recommended for English."
                    )
                    llm_dropdown = gr.Dropdown(
                        label="🧠 Scene Description Model (LLM)",
                        choices=LLM_MODELS,
                        value=DEFAULT_LLM_MODEL,
                        info="Language model to generate visual scene descriptions from lyrics."
                    )
                with gr.Column():
                    image_dropdown = gr.Dropdown(
                        label="🎨 Image Generation Model",
                        choices=IMAGE_MODELS,
                        value=DEFAULT_IMAGE_MODEL,
                        info="Stable Diffusion model for generating scene images."
                    )
                    video_dropdown = gr.Dropdown(
                        label="🎬 Video Animation Model",
                        choices=VIDEO_MODELS,
                        value=DEFAULT_VIDEO_MODEL,
                        info="Model to animate still images into video clips."
                    )
        
        with gr.TabItem("✍️ Scene Prompting"):
            gr.Markdown("**Customize how AI generates scene descriptions:**")
            with gr.Column():
                prompt_template_input = gr.Textbox(
                    label="LLM Prompt Template",
                    value=DEFAULT_PROMPT_TEMPLATE,
                    lines=6,
                    info="Template for generating scene descriptions. Use {lyrics}, {max_words}, and {max_sentences} as placeholders."
                )
                with gr.Row():
                    max_words_input = gr.Slider(
                        label="Max Words per Scene",
                        minimum=10,
                        maximum=100,
                        step=5,
                        value=DEFAULT_MAX_WORDS,
                        info="Limit words in each scene description (more words = more detailed scenes)."
                    )
                    max_sentences_input = gr.Slider(
                        label="Max Sentences per Scene",
                        minimum=1,
                        maximum=5,
                        step=1,
                        value=DEFAULT_MAX_SENTENCES,
                        info="Limit sentences per scene (1-2 recommended for music videos)."
                    )
                style_suffix_input = gr.Textbox(
                    label="Visual Style Keywords",
                    value=DEFAULT_STYLE_SUFFIX,
                    info="Style keywords added to all scenes for consistent visual style (e.g., 'cinematic, vibrant colors')."
                )
        
        with gr.TabItem("🎬 Video Settings"):
            gr.Markdown("**Configure video output and subtitle styling:**")
            with gr.Column():
                with gr.Row():
                    template_dropdown = gr.Dropdown(
                        label="πŸŽͺ Subtitle Animation Style",
                        choices=template_choices,
                        value=DEFAULT_TEMPLATE,
                        info="Choose the kinetic subtitle animation style."
                    )
                    res_dropdown = gr.Dropdown(
                        label="πŸ“Ί Video Resolution",
                        choices=["512x288", "1024x576", "1280x720"],
                        value=DEFAULT_RESOLUTION,
                        info="Higher resolution = better quality but much slower generation."
                    )
                with gr.Row():
                    fps_input = gr.Textbox(
                        label="🎞️ Video FPS",
                        value=DEFAULT_FPS_MODE,
                        info="Frames per second. Use 'Auto' to match lyric timing, or set fixed value (e.g., '24', '30')."
                    )
                    seed_input = gr.Number(
                        label="🌱 Random Seed",
                        value=DEFAULT_SEED,
                        precision=0,
                        info="Set seed for reproducible results (0 = random). Use same seed to recreate results."
                    )
                with gr.Row():
                    image_mode_input = gr.Radio(
                        label="πŸ–ΌοΈ Scene Generation Mode",
                        choices=IMAGE_MODES,
                        value=DEFAULT_IMAGE_MODE,
                        info="Independent: each scene is unique. Consistent: scenes influence each other for style continuity."
                    )
                    strength_slider = gr.Slider(
                        label="🎯 Style Consistency Strength",
                        minimum=0.1,
                        maximum=0.9,
                        step=0.05,
                        value=0.5,
                        visible=False,
                        info="How much each scene influences the next (lower = more influence, higher = more variety)."
                    )
                crossfade_slider = gr.Slider(
                    label="πŸ”„ Scene Transition Duration",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.05,
                    value=DEFAULT_CROSSFADE,
                    info="Smooth crossfade between scenes in seconds (0 = hard cuts, 0.25 = subtle blend)."
                )
    
    # Quick preset handling
    def apply_quality_preset(preset):
        if preset == "Fast (512x288)":
            return gr.update(value="512x288"), gr.update(value="tiny"), gr.update(value="stabilityai/sdxl-turbo")
        elif preset == "High Quality (1280x720)":
            return gr.update(value="1280x720"), gr.update(value="large"), gr.update(value="stabilityai/stable-diffusion-xl-base-1.0")
        else:  # Balanced
            return gr.update(value="1024x576"), gr.update(value="medium.en"), gr.update(value="stabilityai/stable-diffusion-xl-base-1.0")
    
    quick_quality.change(
        apply_quality_preset,
        inputs=[quick_quality],
        outputs=[res_dropdown, whisper_dropdown, image_dropdown]
    )
    
    # Make strength slider visible only when Consistent mode is selected
    def update_strength_visibility(mode):
        return gr.update(visible=(mode == "Consistent (Img2Img)"))
    
    image_mode_input.change(update_strength_visibility, inputs=image_mode_input, outputs=strength_slider)

    # Enhanced preview section
    with gr.Row():
        with gr.Column(scale=1):
            preview_btn = gr.Button("πŸ” Preview First Scene", variant="secondary", size="lg")
            gr.Markdown("*Generate a quick preview of the first scene to test your settings*")
        with gr.Column(scale=2):
            generate_btn = gr.Button("🎬 Generate Complete Music Video", variant="primary", size="lg")
            gr.Markdown("*Start the full video generation process (this may take several minutes)*")
    
    # Preview results
    with gr.Row(visible=False) as preview_row:
        with gr.Column():
            preview_img = gr.Image(label="Preview Scene", type="pil", height=300)
        with gr.Column():
            preview_prompt = gr.Textbox(label="Generated Scene Description", lines=3)
            preview_info = gr.Markdown("")
    
    # Progress and status
    progress_bar = gr.Progress()
    status_text = gr.Textbox(
        label="πŸ“Š Generation Status", 
        value="Ready to start...",
        interactive=False,
        lines=2
    )
    
    # Results section with better organization
    with gr.Tabs():
        with gr.TabItem("πŸŽ₯ Final Video"):
            output_video = gr.Video(label="Generated Music Video", format="mp4", height=400)
            with gr.Row():
                download_file = gr.File(label="πŸ“₯ Download Video File", file_count="single")
                video_info = gr.Textbox(label="Video Information", lines=2, interactive=False)
        
        with gr.TabItem("πŸ–ΌοΈ Generated Images"):
            image_gallery = gr.Gallery(
                label="Scene Images from Video Generation",
                columns=3,
                rows=2,
                height="auto",
                object_fit="contain",
                show_label=True
            )
            gallery_info = gr.Markdown("*Scene images will appear here after generation*")
        
        with gr.TabItem("πŸ“ Scene Descriptions"):
            with gr.Accordion("Generated Scene Prompts", open=True):
                prompt_text = gr.Markdown("", elem_id="prompt_markdown")
            segment_info = gr.Textbox(
                label="Segmentation Summary", 
                lines=3, 
                interactive=False,
                placeholder="Segment analysis will appear here..."
            )
    
    # Preview function
    def on_preview(
        audio, whisper_model, llm_model, image_model, 
        prompt_template, max_words, max_sentences, style_suffix, resolution
    ):
        if not audio:
            return (gr.update(visible=False), None, "Please upload audio first", 
                   "⚠️ **No audio file provided**\n\nPlease upload an audio file to generate a preview.")
        
        # Quick transcription and segmentation of first few seconds
        try:
            # Extract first 10 seconds of audio for quick preview
            import subprocess
            import tempfile
            
            with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_audio:
                temp_audio_path = temp_audio.name
            
            # Use ffmpeg to extract first 10 seconds
            subprocess.run([
                "ffmpeg", "-y", "-i", audio, "-ss", "0", "-t", "10", 
                "-acodec", "pcm_s16le", temp_audio_path
            ], check=True, capture_output=True)
            
            # Transcribe with fastest model for preview
            result = transcribe_audio(temp_audio_path, "tiny")
            segments = segment_lyrics(result)
            os.unlink(temp_audio_path)
            
            if not segments:
                return (gr.update(visible=False), None, "No speech detected in first 10 seconds", 
                       "⚠️ **No speech detected**\n\nTry with audio that has clear vocals at the beginning.")
            
            first_segment = segments[0]
            
            # Format prompt template
            formatted_prompt = prompt_template.format(
                max_words=max_words,
                max_sentences=max_sentences,
                lyrics=first_segment["text"]
            )
            
            # Generate prompt
            scene_prompt = generate_scene_prompts(
                [first_segment], 
                llm_model=llm_model,
                prompt_template=formatted_prompt,
                style_suffix=style_suffix
            )[0]
            
            # Generate image
            if resolution and "x" in resolution.lower():
                width, height = map(int, resolution.lower().split("x"))
            else:
                width, height = 1024, 576
                
            image = preview_image_generation(
                scene_prompt, 
                image_model=image_model,
                width=width,
                height=height
            )
            
            # Create info text
            duration = first_segment['end'] - first_segment['start']
            info_text = f"""
βœ… **Preview Generated Successfully**

**Detected Lyrics:** "{first_segment['text'][:100]}{'...' if len(first_segment['text']) > 100 else ''}"

**Scene Duration:** {duration:.1f} seconds

**Generated Description:** {scene_prompt[:150]}{'...' if len(scene_prompt) > 150 else ''}

**Image Resolution:** {width}x{height}
            """
            
            return gr.update(visible=True), image, scene_prompt, info_text
            
        except subprocess.CalledProcessError as e:
            return (gr.update(visible=False), None, "Audio processing failed", 
                   "❌ **Audio Processing Error**\n\nFFmpeg failed to process the audio file. Please check the format.")
        except Exception as e:
            print(f"Preview error: {e}")
            return (gr.update(visible=False), None, f"Preview failed: {str(e)}", 
                   f"❌ **Preview Error**\n\n{str(e)}\n\nPlease check your audio file and model settings.")

    # Bind button click to processing function
    def on_generate(
        audio, whisper_model, llm_model, image_model, video_model,
        template_name, resolution, fps, seed, prompt_template,
        max_words, max_sentences, style_suffix, image_mode, strength,
        crossfade_duration
    ):
        if not audio:
            return (None, None, gr.update(value="**No audio file provided**\n\nPlease upload an audio file to start generation.", visible=True), 
                   [], "Ready to start...", "", "")
            
        try:
            # Start generation
            start_time = time.time()
            final_path, work_dir = process_audio(
                audio, whisper_model, llm_model, image_model, video_model,
                template_name, resolution, fps, int(seed), prompt_template,
                max_words, max_sentences, style_suffix, image_mode, strength,
                crossfade_duration
            )
            
            generation_time = time.time() - start_time
            
            # Load prompts from file to display
            prompts_file = os.path.join(work_dir, "prompts.txt")
            prompts_markdown = ""
            try:
                with open(prompts_file, 'r', encoding='utf-8') as pf:
                    content = pf.read()
                    # Format prompts as numbered list
                    prompts_lines = content.strip().splitlines()
                    prompts_markdown = "\n".join([f"**{line}**" for line in prompts_lines])
            except:
                prompts_markdown = "Scene prompts not available"
            
            # Load segment information
            segment_summary = ""
            try:
                # Get audio duration and file info
                import subprocess
                duration_cmd = ["ffprobe", "-v", "error", "-show_entries", "format=duration", 
                              "-of", "default=noprint_wrappers=1:nokey=1", audio]
                audio_duration = float(subprocess.check_output(duration_cmd, text=True).strip())
                
                file_size = os.path.getsize(final_path) / (1024 * 1024)  # MB
                segment_summary = f"""πŸ“Š **Generation Summary:**
β€’ Audio Duration: {audio_duration:.1f} seconds
β€’ Processing Time: {generation_time/60:.1f} minutes  
β€’ Final Video Size: {file_size:.1f} MB
β€’ Resolution: {resolution}
β€’ Template: {template_name}"""
            except:
                segment_summary = f"Generation completed in {generation_time/60:.1f} minutes"
                
            # Load generated images for the gallery
            images = []
            try:
                import glob
                image_files = glob.glob(os.path.join(work_dir, "*_img.png"))
                for img_file in sorted(image_files):
                    try:
                        img = Image.open(img_file)
                        images.append(img)
                    except:
                        pass
            except Exception as e:
                print(f"Error loading images for gallery: {e}")
            
            # Create video info
            video_info = f"βœ… Video generated successfully!\nFile: {os.path.basename(final_path)}\nSize: {file_size:.1f} MB"
            gallery_info_text = f"**{len(images)} scene images generated**" if images else "No images available"
            
            return (final_path, final_path, gr.update(value=prompts_markdown, visible=True), 
                   images, f"βœ… Generation complete! ({generation_time/60:.1f} minutes)", 
                   video_info, segment_summary)
            
        except Exception as e:
            error_msg = str(e)
            print(f"Generation error: {e}")
            import traceback
            traceback.print_exc()
            
            return (None, None, gr.update(value=f"**❌ Generation Failed**\n\n{error_msg}", visible=True), 
                   [], f"❌ Error: {error_msg}", "", "")

    preview_btn.click(
        on_preview,
        inputs=[
            audio_input, whisper_dropdown, llm_dropdown, image_dropdown, 
            prompt_template_input, max_words_input, max_sentences_input,
            style_suffix_input, res_dropdown
        ],
        outputs=[preview_row, preview_img, preview_prompt, preview_info]
    )

    generate_btn.click(
        on_generate,
        inputs=[
            audio_input, whisper_dropdown, llm_dropdown, image_dropdown, video_dropdown,
            template_dropdown, res_dropdown, fps_input, seed_input, prompt_template_input,
            max_words_input, max_sentences_input, style_suffix_input,
            image_mode_input, strength_slider, crossfade_slider
        ],
        outputs=[output_video, download_file, prompt_text, image_gallery, status_text, video_info, segment_info]
    )

if __name__ == "__main__":
    # Uncomment for custom hosting options
    # demo.launch(server_name='0.0.0.0', server_port=7860)
    demo.launch()