import streamlit as st from langchain.prompts import PromptTemplate from langchain.llms import CTransformers # functio to get response from LLAMA 2 model def get_llama_response(input_text,no_words,blog_style): ### LLama 2 model llm = CTransformers(model = 'TheBloke/Llama-2-7B-Chat-GGML', model_type = 'llama', config = {'max_new_tokens': 256, 'temperature': 0.01}) ## Prompt Template template = """ write a blog for {blog_style} job profile for a topic {input_text} within {no_words} words """ prompt = PromptTemplate(input_vairables =['blog_style','input_text','no_words'], template = template) ## Generate the response from LLMA 2 model response = llm(prompt.format(blog_style=blog_style , input_text = input_text , no_words = no_words)) print(response) return response st.set_page_config(page_title = 'Generate Blogs', page_icon = '', layout = 'centered', initial_sidebar_state = 'collapsed') st.header('Generate Blogs ') input_text = st.text_input('Enter the blog Topic') ## creating two more columns additional 2 fields col1 , col2 = st.columns([5,5]) with col1 : no_words = st.text_input('No. of words ') with col2 : blog_style = st.selectbox('Wiriting the blog for ', ('Researchers','Data Scientist','Common People'),index=0) submit = st.button('Generate') ## final response if submit : st.write(get_llama_response(input_text,no_words,blog_style))