import torch import torchvision from torch import nn from torchvision.models._api import WeightsEnum from torch.hub import load_state_dict_from_url def get_state_dict(self, *args, **kwargs): kwargs.pop("check_hash") return load_state_dict_from_url(self.url, *args, **kwargs) WeightsEnum.get_state_dict = get_state_dict def create_effnetb2_model(num_classes : int = 3, seed : int = 42): weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT transform = weights.transforms() model = torchvision.models.efficientnet_b2(weights= weights) for param in model.parameters(): param.requires_grad = False torch.manual_seed(seed) model.classifier = torch.nn.Sequential( torch.nn.Dropout(p=0.3, inplace= True), torch.nn.Linear(in_features = 1408, out_features = num_classes) ) return model , transform