Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,151 +7,97 @@ import gradio as gr
|
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
import os
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
# Globals
|
| 14 |
-
# ==========================
|
| 15 |
-
MODEL_NAME = "gemini-2.5-flash"
|
| 16 |
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 17 |
|
| 18 |
-
|
| 19 |
-
meta = None
|
| 20 |
-
client = None
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
# Helper Functions
|
| 25 |
-
# ==========================
|
| 26 |
def chunk_text(text, chunk_chars=800, overlap=100):
|
| 27 |
-
"""Split text into overlapping chunks"""
|
| 28 |
chunks, start = [], 0
|
| 29 |
while start < len(text):
|
| 30 |
end = min(start + chunk_chars, len(text))
|
| 31 |
chunks.append(text[start:end].strip())
|
| 32 |
start = end - overlap
|
| 33 |
-
if start < 0:
|
| 34 |
-
|
| 35 |
-
if end == len(text):
|
| 36 |
-
break
|
| 37 |
return [c for c in chunks if c]
|
| 38 |
|
|
|
|
|
|
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
raw_text = file_obj.read().decode("utf-8")
|
| 45 |
-
chunks = chunk_text(raw_text)
|
| 46 |
-
|
| 47 |
-
embeddings = embedder.encode(
|
| 48 |
-
chunks, convert_to_numpy=True, normalize_embeddings=True
|
| 49 |
-
)
|
| 50 |
-
|
| 51 |
-
dim = embeddings.shape[1]
|
| 52 |
-
index = faiss.IndexFlatIP(dim)
|
| 53 |
-
index.add(embeddings)
|
| 54 |
-
meta = [{"id": i, "chunk": c} for i, c in enumerate(chunks)]
|
| 55 |
-
|
| 56 |
-
return "β
File processed! You can now ask questions."
|
| 57 |
-
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
|
|
|
|
|
|
|
|
|
|
| 68 |
|
|
|
|
| 69 |
def retrieve(query, top_k=3):
|
| 70 |
-
"""Retrieve top matching chunks"""
|
| 71 |
-
if index is None:
|
| 72 |
-
return []
|
| 73 |
-
|
| 74 |
q_emb = embedder.encode([query], convert_to_numpy=True, normalize_embeddings=True)
|
| 75 |
scores, idxs = index.search(q_emb, top_k)
|
| 76 |
-
|
| 77 |
results = []
|
| 78 |
for i in idxs[0]:
|
| 79 |
-
if i == -1:
|
| 80 |
-
continue
|
| 81 |
results.append(meta[i]["chunk"])
|
| 82 |
return results
|
| 83 |
|
| 84 |
-
|
| 85 |
def call_gemini(system_prompt, user_prompt):
|
| 86 |
-
"""Query Gemini API"""
|
| 87 |
-
if client is None:
|
| 88 |
-
return "β Please enter your Gemini API Key first."
|
| 89 |
-
|
| 90 |
try:
|
| 91 |
response = client.models.generate_content(
|
| 92 |
model=MODEL_NAME,
|
| 93 |
contents=f"{system_prompt}\n\n{user_prompt}",
|
| 94 |
config=types.GenerateContentConfig(
|
| 95 |
-
thinking_config=types.ThinkingConfig(thinking_budget=0)
|
| 96 |
),
|
| 97 |
)
|
| 98 |
return response.text
|
| 99 |
except Exception as e:
|
| 100 |
return f"β Gemini error: {e}"
|
| 101 |
|
| 102 |
-
|
| 103 |
def answer_question(question, top_k=3):
|
| 104 |
-
"""Answer user query based on retrieved context"""
|
| 105 |
context_chunks = retrieve(question, top_k)
|
| 106 |
if not context_chunks:
|
| 107 |
-
return "β οΈ No relevant context found in your file."
|
| 108 |
-
|
| 109 |
context = "\n---\n".join(context_chunks)
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
If the answer is not in the context, reply:
|
| 113 |
-
"I donβt know based on the provided chat."
|
| 114 |
-
"""
|
| 115 |
-
user_prompt = f"""Client asked:
|
| 116 |
-
{question}
|
| 117 |
-
|
| 118 |
-
Relevant chat context:
|
| 119 |
-
{context}
|
| 120 |
-
"""
|
| 121 |
-
return call_gemini(system_prompt, user_prompt)
|
| 122 |
-
|
| 123 |
|
|
|
|
| 124 |
def chatbot_fn(message, history):
|
| 125 |
-
"""Gradio chatbot function"""
|
| 126 |
reply = answer_question(message)
|
| 127 |
return reply
|
| 128 |
|
| 129 |
-
|
| 130 |
-
# ==========================
|
| 131 |
-
# Gradio UI
|
| 132 |
-
# ==========================
|
| 133 |
with gr.Blocks() as demo:
|
| 134 |
gr.Markdown("## π€ Arduino Fiverr Chatbot (Gemini Powered)")
|
|
|
|
| 135 |
|
| 136 |
-
|
| 137 |
-
api_key_box = gr.Textbox(label="π Enter Gemini API Key", type="password")
|
| 138 |
-
api_key_btn = gr.Button("Set API Key")
|
| 139 |
-
api_status = gr.Label(label="API Key Status")
|
| 140 |
-
|
| 141 |
-
api_key_btn.click(set_api_key, inputs=api_key_box, outputs=api_status)
|
| 142 |
-
|
| 143 |
-
with gr.Row():
|
| 144 |
-
file_upload = gr.File(label="π Upload your Fiverr chat (.txt)", type="file")
|
| 145 |
-
file_status = gr.Label(label="File Status")
|
| 146 |
-
|
| 147 |
-
file_upload.upload(build_index, inputs=file_upload, outputs=file_status)
|
| 148 |
-
|
| 149 |
-
gr.ChatInterface(
|
| 150 |
-
fn=chatbot_fn,
|
| 151 |
-
title="Arduino Client Assistant",
|
| 152 |
-
textbox="Ask your client-related question here...",
|
| 153 |
-
)
|
| 154 |
-
|
| 155 |
-
# Run app
|
| 156 |
-
if __name__ == "__main__":
|
| 157 |
-
demo.launch()
|
|
|
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
import os
|
| 9 |
|
| 10 |
+
import faiss
|
| 11 |
+
import gradio as gr
|
| 12 |
+
from sentence_transformers import SentenceTransformer
|
| 13 |
+
from google import genai
|
| 14 |
+
from google.genai import types
|
| 15 |
+
|
| 16 |
+
# β
Take Gemini API key from user
|
| 17 |
+
api_key = input("π Enter your Gemini API Key: ")
|
| 18 |
+
client = genai.Client(api_key=api_key)
|
| 19 |
|
| 20 |
+
# β
Load embedding model
|
|
|
|
|
|
|
|
|
|
| 21 |
embedder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 22 |
|
| 23 |
+
MODEL_NAME = "gemini-2.5-flash" # use stable model
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# β
Read file (assumes filename already set from upload)
|
| 26 |
+
with open(filename, "r", encoding="utf-8") as f:
|
| 27 |
+
raw_text = f.read()
|
| 28 |
|
| 29 |
+
# β
Split into chunks
|
|
|
|
|
|
|
| 30 |
def chunk_text(text, chunk_chars=800, overlap=100):
|
|
|
|
| 31 |
chunks, start = [], 0
|
| 32 |
while start < len(text):
|
| 33 |
end = min(start + chunk_chars, len(text))
|
| 34 |
chunks.append(text[start:end].strip())
|
| 35 |
start = end - overlap
|
| 36 |
+
if start < 0: start = 0
|
| 37 |
+
if end == len(text): break
|
|
|
|
|
|
|
| 38 |
return [c for c in chunks if c]
|
| 39 |
|
| 40 |
+
chunks = chunk_text(raw_text)
|
| 41 |
+
embeddings = embedder.encode(chunks, convert_to_numpy=True, normalize_embeddings=True)
|
| 42 |
|
| 43 |
+
dim = embeddings.shape[1]
|
| 44 |
+
index = faiss.IndexFlatIP(dim)
|
| 45 |
+
index.add(embeddings)
|
| 46 |
+
meta = [{"id": i, "chunk": c} for i, c in enumerate(chunks)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
# β
Prompt templates
|
| 49 |
+
SYSTEM_TEMPLATE = """You are a professional Arduino freelancer.
|
| 50 |
+
Answer ONLY using the provided Fiverr chat context.
|
| 51 |
+
If the answer is not in the context, reply:
|
| 52 |
+
"I donβt know based on the provided chat."
|
| 53 |
+
"""
|
| 54 |
+
USER_TEMPLATE = """Client asked:
|
| 55 |
+
{question}
|
| 56 |
|
| 57 |
+
Relevant chat context:
|
| 58 |
+
{context}
|
| 59 |
+
"""
|
| 60 |
|
| 61 |
+
# β
Retrieve top chunks
|
| 62 |
def retrieve(query, top_k=3):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
q_emb = embedder.encode([query], convert_to_numpy=True, normalize_embeddings=True)
|
| 64 |
scores, idxs = index.search(q_emb, top_k)
|
|
|
|
| 65 |
results = []
|
| 66 |
for i in idxs[0]:
|
| 67 |
+
if i == -1: continue
|
|
|
|
| 68 |
results.append(meta[i]["chunk"])
|
| 69 |
return results
|
| 70 |
|
| 71 |
+
# β
Call Gemini (new client API)
|
| 72 |
def call_gemini(system_prompt, user_prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
try:
|
| 74 |
response = client.models.generate_content(
|
| 75 |
model=MODEL_NAME,
|
| 76 |
contents=f"{system_prompt}\n\n{user_prompt}",
|
| 77 |
config=types.GenerateContentConfig(
|
| 78 |
+
thinking_config=types.ThinkingConfig(thinking_budget=0) # disables thinking
|
| 79 |
),
|
| 80 |
)
|
| 81 |
return response.text
|
| 82 |
except Exception as e:
|
| 83 |
return f"β Gemini error: {e}"
|
| 84 |
|
| 85 |
+
# β
Answer function
|
| 86 |
def answer_question(question, top_k=3):
|
|
|
|
| 87 |
context_chunks = retrieve(question, top_k)
|
| 88 |
if not context_chunks:
|
| 89 |
+
return "β οΈ No relevant context found in your chat file."
|
|
|
|
| 90 |
context = "\n---\n".join(context_chunks)
|
| 91 |
+
user_prompt = USER_TEMPLATE.format(question=question, context=context)
|
| 92 |
+
return call_gemini(SYSTEM_TEMPLATE, user_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
# β
Gradio Chatbot
|
| 95 |
def chatbot_fn(message, history):
|
|
|
|
| 96 |
reply = answer_question(message)
|
| 97 |
return reply
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
with gr.Blocks() as demo:
|
| 100 |
gr.Markdown("## π€ Arduino Fiverr Chatbot (Gemini Powered)")
|
| 101 |
+
gr.ChatInterface(fn=chatbot_fn, title="Arduino Client Assistant")
|
| 102 |
|
| 103 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|