| import streamlit as st | |
| import pickle | |
| import numpy as np | |
| st.title("COVID19 GLOBAL FORECAST") | |
| coc=st.number_input("Confirmed Cases") | |
| lat=st.number_input("Latitude") | |
| lon=st.number_input("Longitude") | |
| model_selection=st.radio("Select your model",("Regression","Classification")) | |
| if model_selection is "Regression": | |
| file_path = 'covid1_model.pkl' | |
| with open(file_path, 'rb') as file: | |
| model = pickle.load(file) | |
| data=[coc,lat,lon] | |
| if st.button("Predict"): | |
| data=np.array(data) | |
| if len(data.shape) == 1: | |
| data = np.expand_dims(data, axis=0) | |
| prediction=model.predict(data) | |
| st.write(prediction) | |
| else: | |
| file_path = 'covid2_model2.pkl' | |
| with open(file_path, 'rb') as file: | |
| model = pickle.load(file) | |
| data=[lat,lon] | |
| if st.button("Predict"): | |
| data=np.array(data) | |
| if len(data.shape) == 1: | |
| data = np.expand_dims(data, axis=0) | |
| prediction=model.predict(data) | |
| pred=np.argmax(prediction) | |
| st.write(pred) | |