File size: 891 Bytes
59d5a40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
import streamlit as st
from tensorflow.keras.models import load_model
from sklearn.feature_extraction.text import CountVectorizer
from textblob import TextBlob
from nltk.stem import PorterStemmer
import numpy as np

pr=PorterStemmer()
def lemmafn(text):
    words=TextBlob(text).words
    return [pr.stem(word) for word in words]
vect=CountVectorizer(stop_words="english",ngram_range=(1,3),max_features=10000)

model=load_model("essay_model.h5")

st.title("Predict Essayss Scores")
essay=st.text_area("Essay")
if essay is not None:
    essay=essay.lower()
    essay=essay.replace("[^\w\s]","",)
    essay=essay.replace("\d+","")
    essay=essay.replace("\n","")
    essay=[essay]
    if st.button("Predict"):
       data=vect.fit_transform(essay)
       prediction=model.predict(data)
       predicted_class=np.argmax(prediction)
       st.write(predicted_class)