File size: 12,106 Bytes
d4852d9 b8f4763 d4852d9 b8f4763 d4852d9 a4da241 d4852d9 a4da241 d4852d9 a4da241 d4852d9 a4da241 d4852d9 a4da241 d4852d9 a4da241 d4852d9 b8f4763 d4852d9 b8f4763 d4852d9 b8f4763 d4852d9 b8f4763 d4852d9 b8f4763 d4852d9 b8f4763 d4852d9 a4da241 d4852d9 b8f4763 d4852d9 b8f4763 d4852d9 b8f4763 d4852d9 b8f4763 d4852d9 b8f4763 d4852d9 a4da241 d4852d9 a4da241 d4852d9 a4da241 d4852d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import argparse
import os
import tempfile
import numpy as np
import pandas as pd
import dgl
import torch
import wandb
from tqdm.auto import tqdm
from exp.utils import prepare_graphs, normalize_embeddings, LRSchedule
from exp.prepare_recsys import prepare_recsys
from exp.evaluate import evaluate_recsys
class GNNLayer(torch.nn.Module):
def __init__(self, hidden_dim, aggregator_type, skip_connection, bidirectional):
super().__init__()
self._skip_connection = skip_connection
self._bidirectional = bidirectional
self._conv = dgl.nn.SAGEConv(hidden_dim, hidden_dim, aggregator_type)
self._activation = torch.nn.ReLU()
if bidirectional:
self._conv_rev = dgl.nn.SAGEConv(hidden_dim, hidden_dim, aggregator_type)
self._activation_rev = torch.nn.ReLU()
def forward(self, graph, x):
edge_weights = graph.edata["weights"]
y = self._activation(self._conv(graph, x, edge_weights))
if self._bidirectional:
reversed_graph = dgl.reverse(graph, copy_edata=True)
edge_weights = reversed_graph.edata["weights"]
y = y + self._activation_rev(self._conv_rev(reversed_graph, x, edge_weights))
if self._skip_connection:
return x + y
else:
return y
class GNNModel(torch.nn.Module):
def __init__(
self,
bipartite_graph,
text_embeddings,
num_layers,
hidden_dim,
aggregator_type,
skip_connection,
bidirectional,
num_traversals,
termination_prob,
num_random_walks,
num_neighbor,
):
super().__init__()
self._bipartite_graph = bipartite_graph
self._text_embeddings = text_embeddings
self._sampler = dgl.sampling.PinSAGESampler(
bipartite_graph, "Item", "User", num_traversals,
termination_prob, num_random_walks, num_neighbor)
self._text_encoder = torch.nn.Linear(text_embeddings.shape[-1], hidden_dim)
self._layers = torch.nn.ModuleList()
for _ in range(num_layers):
self._layers.append(GNNLayer(
hidden_dim, aggregator_type, skip_connection, bidirectional))
def _sample_subraph(self, frontier_ids):
num_layers = len(self._layers)
device = self._bipartite_graph.device
subgraph = dgl.graph(([], []), num_nodes=self._bipartite_graph.num_nodes("Item")).to(device)
prev_ids = set()
weights = []
for _ in range(num_layers):
frontier_ids = torch.tensor(frontier_ids, dtype=torch.int64).to(device)
new_sample = self._sampler(frontier_ids)
new_weights = new_sample.edata["weights"]
new_edges = new_sample.edges()
subgraph.add_edges(*new_edges)
weights.append(new_weights)
prev_ids |= set(frontier_ids.cpu().tolist())
frontier_ids = set(dgl.compact_graphs(subgraph).ndata[dgl.NID].cpu().tolist())
frontier_ids = list(frontier_ids - prev_ids)
subgraph.edata["weights"] = torch.cat(weights, dim=0).to(torch.float32)
return subgraph
def forward(self, ids):
### Sample subgraph
sampled_subgraph = self._sample_subraph(ids)
sampled_subgraph = dgl.compact_graphs(sampled_subgraph, always_preserve=ids)
### Encode text embeddings
text_embeddings = self._text_embeddings[
sampled_subgraph.ndata[dgl.NID]]
features = self._text_encoder(text_embeddings)
### GNN goes brr...
for layer in self._layers:
features = layer(sampled_subgraph, features)
### Select features for initial ids
# TODO: write it more efficiently?
matches = sampled_subgraph.ndata[dgl.NID].unsqueeze(0) == ids.unsqueeze(1)
ids_in_subgraph = matches.nonzero(as_tuple=True)[1]
features = features[ids_in_subgraph]
### Normalize and return
features = features / torch.linalg.norm(features, dim=1, keepdim=True)
return features
### Based on https://arxiv.org/pdf/2205.03169
def nt_xent_loss(sim, temperature):
sim = sim / temperature
n = sim.shape[0] // 2 # n = |user_batch|
aligment_loss = -torch.mean(sim[torch.arange(n), torch.arange(n)+n])
mask = torch.diag(torch.ones(2*n, dtype=torch.bool)).to(sim.device)
sim = torch.where(mask, -torch.inf, sim)
sim = sim[:n, :]
distribution_loss = torch.mean(torch.logsumexp(sim, dim=1))
loss = aligment_loss + distribution_loss
return loss
def sample_item_batch(user_batch, bipartite_graph):
sampled_edges = dgl.sampling.sample_neighbors(
bipartite_graph, {"User": user_batch}, fanout=2
).edges(etype="ItemUser")
item_batch = sampled_edges[0]
item_batch = item_batch[torch.argsort(sampled_edges[1])]
item_batch = item_batch.reshape(-1, 2)
item_batch = item_batch.T
return item_batch
@torch.no_grad()
def inference_model(model, bipartite_graph, batch_size, hidden_dim, device):
model.eval()
item_embeddings = torch.zeros(bipartite_graph.num_nodes("Item"), hidden_dim).to(device)
for items_batch in tqdm(torch.utils.data.DataLoader(
torch.arange(bipartite_graph.num_nodes("Item")),
batch_size=batch_size,
shuffle=True
)):
item_embeddings[items_batch] = model(items_batch.to(device))
item_embeddings = normalize_embeddings(item_embeddings.cpu().numpy())
return item_embeddings
def prepare_gnn_embeddings(
# Paths
items_path,
train_ratings_path,
val_ratings_path,
text_embeddings_path,
embeddings_savepath,
# Learning hyperparameters
temperature,
batch_size,
lr,
num_epochs,
# Model hyperparameters
num_layers,
hidden_dim,
aggregator_type,
skip_connection,
bidirectional,
num_traversals,
termination_prob,
num_random_walks,
num_neighbor,
# Misc
validate_every_n_epoch,
device,
wandb_name,
use_wandb,
):
### Prepare graph
bipartite_graph, _ = prepare_graphs(items_path, train_ratings_path)
bipartite_graph = bipartite_graph.to(device)
### Init wandb
if use_wandb:
wandb.init(project="graph-rec-gnn", name=wandb_name)
### Prepare model
text_embeddings = torch.tensor(np.load(text_embeddings_path)).to(device)
model = GNNModel(
bipartite_graph=bipartite_graph,
text_embeddings=text_embeddings,
num_layers=num_layers,
hidden_dim=hidden_dim,
aggregator_type=aggregator_type,
skip_connection=skip_connection,
bidirectional=bidirectional,
num_traversals=num_traversals,
termination_prob=termination_prob,
num_random_walks=num_random_walks,
num_neighbor=num_neighbor
)
model = model.to(device)
### Prepare dataloader
all_users = torch.arange(bipartite_graph.num_nodes("User")).to(device)
all_users = all_users[bipartite_graph.in_degrees(all_users, etype="ItemUser") > 1] # We need to sample 2 items per user
dataloader = torch.utils.data.DataLoader(
all_users, batch_size=batch_size, shuffle=True, drop_last=True)
### Prepare optimizer & LR scheduler
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda _: 1.0)
### Train loop
model.train()
for epoch in range(num_epochs):
### Train
for user_batch in tqdm(dataloader):
item_batch = sample_item_batch(user_batch, bipartite_graph) # (2, |user_batch|)
item_batch = item_batch.reshape(-1) # (2 * |user_batch|)
features = model(item_batch) # (2 * |user_batch|, hidden_dim)
sim = features @ features.T # (2 * |user_batch|, 2 * |user_batch|)
loss = nt_xent_loss(sim, temperature)
if use_wandb:
wandb.log({"loss": loss.item()})
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
### Validation
if (validate_every_n_epoch is not None) and (((epoch + 1) % validate_every_n_epoch) == 0):
item_embeddings = inference_model(
model, bipartite_graph, batch_size, hidden_dim, device)
with tempfile.TemporaryDirectory() as tmp_dir_name:
tmp_embeddings_path = os.path.join(tmp_dir_name, "embeddings.npy")
np.save(tmp_embeddings_path, item_embeddings)
prepare_recsys(items_path, tmp_embeddings_path, tmp_dir_name)
metrics = evaluate_recsys(
val_ratings_path,
os.path.join(tmp_dir_name, "index.faiss"),
os.path.join(tmp_dir_name, "items.db"))
print(f"Epoch {epoch + 1} / {num_epochs}. {metrics}")
if use_wandb:
wandb.log(metrics)
if use_wandb:
wandb.finish()
### Process full dataset
item_embeddings = inference_model(model, bipartite_graph, batch_size, hidden_dim, device)
np.save(embeddings_savepath, item_embeddings)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Prepare GNN Embeddings")
# Paths
parser.add_argument("--items_path", type=str, required=True, help="Path to the items file")
parser.add_argument("--train_ratings_path", type=str, required=True, help="Path to the train ratings file")
parser.add_argument("--val_ratings_path", type=str, required=True, help="Path to the validation ratings file")
parser.add_argument("--text_embeddings_path", type=str, required=True, help="Path to the text embeddings file")
parser.add_argument("--embeddings_savepath", type=str, required=True, help="Path to the file where gnn embeddings will be saved")
# Learning hyperparameters
parser.add_argument("--temperature", type=float, default=0.1, help="Temperature for NT-Xent loss")
parser.add_argument("--batch_size", type=int, default=512, help="Batch size for training")
parser.add_argument("--lr", type=float, default=0.01, help="Learning rate")
parser.add_argument("--num_epochs", type=int, default=4, help="Number of epochs")
# Model hyperparameters
parser.add_argument("--num_layers", type=int, default=2, help="Number of layers in the model")
parser.add_argument("--hidden_dim", type=int, default=64, help="Hidden dimension size")
parser.add_argument("--aggregator_type", type=str, default="mean", help="Type of aggregator in SAGEConv")
parser.add_argument("--skip_connection", action="store_true", dest="skip_connection", help="Disable skip connections")
parser.add_argument("--no_bidirectional", action="store_false", dest="bidirectional", help="Do not use reversed edges in convolution")
parser.add_argument("--num_traversals", type=int, default=4, help="Number of traversals in PinSAGE-like sampler")
parser.add_argument("--termination_prob", type=float, default=0.5, help="Termination probability in PinSAGE-like sampler")
parser.add_argument("--num_random_walks", type=int, default=200, help="Number of random walks in PinSAGE-like sampler")
parser.add_argument("--num_neighbor", type=int, default=10, help="Number of neighbors in PinSAGE-like sampler")
# Misc
parser.add_argument("--validate_every_n_epoch", type=int, default=4, help="Perform RecSys validation every n train epochs.")
parser.add_argument("--device", type=str, default="cpu", help="Device to run the model on (cpu or cuda)")
parser.add_argument("--wandb_name", type=str, help="WandB run name")
parser.add_argument("--no_wandb", action="store_false", dest="use_wandb", help="Disable WandB logging")
args = parser.parse_args()
prepare_gnn_embeddings(**vars(args)) |