Spaces:
Runtime error
Runtime error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. | |
| import os | |
| from logging import getLogger | |
| from typing import List | |
| from sentencepiece import SentencePieceProcessor | |
| logger = getLogger() | |
| class Tokenizer: | |
| """tokenizing and encoding/decoding text using SentencePiece.""" | |
| def __init__(self, model_path: str): | |
| """ | |
| Initializes the Tokenizer with a SentencePiece model. | |
| Args: | |
| model_path (str): The path to the SentencePiece model file. | |
| """ | |
| # reload tokenizer | |
| assert os.path.isfile(model_path), model_path | |
| self.sp_model = SentencePieceProcessor(model_file=model_path) | |
| logger.info(f"Reloaded SentencePiece model from {model_path}") | |
| # BOS / EOS token IDs | |
| self.n_words: int = self.sp_model.vocab_size() | |
| self.bos_id: int = self.sp_model.bos_id() | |
| self.eos_id: int = self.sp_model.eos_id() | |
| self.pad_id: int = self.sp_model.pad_id() | |
| logger.info( | |
| f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}" | |
| ) | |
| assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() | |
| def encode(self, s: str, bos: bool, eos: bool) -> List[int]: | |
| """ | |
| Encodes a string into a list of token IDs. | |
| Args: | |
| s (str): The input string to be encoded. | |
| bos (bool): Whether to prepend the beginning-of-sequence token. | |
| eos (bool): Whether to append the end-of-sequence token. | |
| Returns: | |
| List[int]: A list of token IDs. | |
| """ | |
| assert type(s) is str | |
| t = self.sp_model.encode(s) | |
| if bos: | |
| t = [self.bos_id] + t | |
| if eos: | |
| t = t + [self.eos_id] | |
| return t | |
| def decode(self, t: List[int]) -> str: | |
| """ | |
| Decodes a list of token IDs into a string. | |
| Args: | |
| t (List[int]): The list of token IDs to be decoded. | |
| Returns: | |
| str: The decoded string. | |
| """ | |
| return self.sp_model.decode(t) |