File size: 9,599 Bytes
2c21cf7 4d13673 9002fc2 2c21cf7 b8cbeff 0a30811 b8cbeff 0a30811 b8cbeff d91b022 2c21cf7 d91b022 2f9dee1 4d13673 9002fc2 eb1696c 9002fc2 9c2c019 913253a 9c2c019 b0aa389 7c06aef 549360a 9c2c019 eb1696c 9002fc2 941d5c5 4e8cb1a 7c06aef 4e8cb1a 7c06aef 4e8cb1a 7c06aef 4e8cb1a 7c06aef 53d2039 7c06aef 98c6811 4e8cb1a eb1696c 7c06aef eb1696c 7c06aef eb1696c 4e8cb1a 7c06aef 4e8cb1a 7c06aef 4e8cb1a 7c06aef 4e8cb1a 7c06aef 53d2039 7c06aef 98c6811 4e8cb1a eb1696c 7c06aef eb1696c 7c06aef eb1696c 2c21cf7 d91b022 7c06aef d91b022 eb1696c 4d13673 7c06aef 566c57e 92d8154 566c57e 32d50b0 2c21cf7 7c06aef 2c21cf7 9002fc2 ebaf279 2c21cf7 4d13673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import json
import os
import numpy as np
import pandas as pd
import uvicorn
# Robust import so this file works both as a package module and as a script
try:
# When executed as a package module (recommended): `python -m uvicorn evals.backend:app`
from .countries import make_country_table
except Exception:
try:
# When executed from project root with package path available
from evals.countries import make_country_table
except Exception:
# When executed directly from evals/ directory
from countries import make_country_table
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
scores = pd.read_json("results.json")
languages = pd.read_json("languages.json")
models = pd.read_json("models.json")
def mean(lst):
return sum(lst) / len(lst) if lst else None
task_metrics = [
"translation_from_bleu",
"translation_to_bleu",
"classification_accuracy",
"mmlu_accuracy",
"arc_accuracy",
"truthfulqa_accuracy",
"mgsm_accuracy",
]
def compute_normalized_average(df, metrics):
"""Compute average of min-max normalized metric columns."""
normalized_df = df[metrics].copy()
for col in metrics:
if col in normalized_df.columns:
col_min = normalized_df[col].min()
col_max = normalized_df[col].max()
if col_max > col_min: # Avoid division by zero
normalized_df[col] = (normalized_df[col] - col_min) / (col_max - col_min)
else:
normalized_df[col] = 0 # If all values are the same, set to 0
return normalized_df.mean(axis=1, skipna=False)
def make_model_table(scores_df, models):
# Create a combined task_metric for origin
scores_df["task_metric_origin"] = (
scores_df["task"] + "_" + scores_df["metric"] + "_" + scores_df["origin"]
)
# Pivot to get scores for each origin-specific metric
scores_pivot = scores_df.pivot_table(
index="model",
columns="task_metric_origin",
values="score",
aggfunc="mean",
)
# Create the regular task_metric for the main average calculation
scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"]
main_pivot = scores_df.pivot_table(
index="model", columns="task_metric", values="score", aggfunc="mean"
)
# Merge the two pivots
df = pd.merge(main_pivot, scores_pivot, on="model", how="outer")
for metric in task_metrics:
if metric not in df.columns:
df[metric] = np.nan
df["average"] = compute_normalized_average(df, task_metrics)
# Compute origin presence per model+metric
origin_presence = (
scores_df.groupby(["model", "task_metric", "origin"]).size().unstack(fill_value=0)
)
# Add boolean flags: show asterisk only if exclusively machine-origin contributed
for metric in task_metrics:
human_col_name = "human" if "human" in origin_presence.columns else None
machine_col_name = "machine" if "machine" in origin_presence.columns else None
if human_col_name or machine_col_name:
flags = []
for model in df.index:
try:
counts = origin_presence.loc[(model, metric)]
except KeyError:
flags.append(False)
continue
human_count = counts.get(human_col_name, 0) if human_col_name else 0
machine_count = counts.get(machine_col_name, 0) if machine_col_name else 0
flags.append(machine_count > 0 and human_count == 0)
df[f"{metric}_is_machine"] = flags
else:
df[f"{metric}_is_machine"] = False
df = df.sort_values(by="average", ascending=False).reset_index()
df = pd.merge(df, models, left_on="model", right_on="id", how="left")
df["rank"] = df.index + 1
# Dynamically find all metric columns to include
final_cols = df.columns
metric_cols = [m for m in final_cols if any(tm in m for tm in task_metrics)]
df = df[
[
"rank", "model", "name", "provider_name", "hf_id", "creation_date",
"size", "type", "license", "cost", "average",
*sorted(list(set(metric_cols)))
]
]
return df
def make_language_table(scores_df, languages):
# Create a combined task_metric for origin
scores_df["task_metric_origin"] = (
scores_df["task"] + "_" + scores_df["metric"] + "_" + scores_df["origin"]
)
# Pivot to get scores for each origin-specific metric
scores_pivot = scores_df.pivot_table(
index="bcp_47",
columns="task_metric_origin",
values="score",
aggfunc="mean",
)
# Create the regular task_metric for the main average calculation
scores_df["task_metric"] = scores_df["task"] + "_" + scores_df["metric"]
main_pivot = scores_df.pivot_table(
index="bcp_47", columns="task_metric", values="score", aggfunc="mean"
)
# Merge the two pivots
df = pd.merge(main_pivot, scores_pivot, on="bcp_47", how="outer")
for metric in task_metrics:
if metric not in df.columns:
df[metric] = np.nan
df["average"] = compute_normalized_average(df, task_metrics)
# Compute origin presence per language+metric; show asterisk only if exclusively machine-origin
origin_presence = (
scores_df.groupby(["bcp_47", "task_metric", "origin"]).size().unstack(fill_value=0)
)
for metric in task_metrics:
human_col_name = "human" if "human" in origin_presence.columns else None
machine_col_name = "machine" if "machine" in origin_presence.columns else None
if human_col_name or machine_col_name:
flags = []
for bcp in df.index:
try:
counts = origin_presence.loc[(bcp, metric)]
except KeyError:
flags.append(False)
continue
human_count = counts.get(human_col_name, 0) if human_col_name else 0
machine_count = counts.get(machine_col_name, 0) if machine_col_name else 0
flags.append(machine_count > 0 and human_count == 0)
df[f"{metric}_is_machine"] = flags
else:
df[f"{metric}_is_machine"] = False
# Per-row machine-origin flags for each metric (true if any machine-origin score exists for the language)
for metric in task_metrics:
machine_col = f"{metric}_machine"
if machine_col in df.columns:
df[f"{metric}_is_machine"] = df[machine_col].notna()
else:
df[f"{metric}_is_machine"] = False
df = pd.merge(languages, df, on="bcp_47", how="outer")
df = df.sort_values(by="speakers", ascending=False)
# Dynamically find all metric columns to include
final_cols = df.columns
metric_cols = [m for m in final_cols if any(tm in m for tm in task_metrics)]
df = df[
[
"bcp_47", "language_name", "autonym", "speakers", "family",
"average", "in_benchmark",
*sorted(list(set(metric_cols)))
]
]
return df
app = FastAPI()
app.add_middleware(CORSMiddleware, allow_origins=["*"])
app.add_middleware(GZipMiddleware, minimum_size=1000)
def serialize(df):
return df.replace({np.nan: None}).to_dict(orient="records")
@app.post("/api/data")
async def data(request: Request):
body = await request.body()
data = json.loads(body)
selected_languages = data.get("selectedLanguages", {})
df = scores.groupby(["model", "bcp_47", "task", "metric", "origin"]).mean().reset_index()
# lang_results = pd.merge(languages, lang_results, on="bcp_47", how="outer")
language_table = make_language_table(df, languages)
datasets_df = pd.read_json("datasets.json")
# Identify which metrics have machine translations available
machine_translated_metrics = set()
for _, row in df.iterrows():
if row["origin"] == "machine":
metric_name = f"{row['task']}_{row['metric']}"
machine_translated_metrics.add(metric_name)
if selected_languages:
# the filtering is only applied for the model table and the country data
df = df[df["bcp_47"].isin(lang["bcp_47"] for lang in selected_languages)]
if len(df) == 0:
model_table = pd.DataFrame()
countries = pd.DataFrame()
else:
model_table = make_model_table(df, models)
countries = make_country_table(make_language_table(df, languages))
all_tables = {
"model_table": serialize(model_table),
"language_table": serialize(language_table),
"dataset_table": serialize(datasets_df),
"countries": serialize(countries),
"machine_translated_metrics": list(machine_translated_metrics),
}
return JSONResponse(content=all_tables)
# Only serve static files if build directory exists (production mode)
if os.path.exists("frontend/build"):
app.mount("/", StaticFiles(directory="frontend/build", html=True), name="frontend")
else:
print("π§ͺ Development mode: frontend/build directory not found")
print("π Frontend should be running on http://localhost:3000")
print("π‘ API available at http://localhost:8000/api/data")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=int(os.environ.get("PORT", 8000)))
|