
Upload from GitHub Actions: Add Todos for using existing machine-translated datasets rather than our own ones
56adaa2
verified
import asyncio | |
import os | |
import random | |
from collections import Counter, defaultdict | |
from datasets import Dataset, load_dataset | |
from datasets_.util import _get_dataset_config_names, _load_dataset | |
from langcodes import Language, standardize_tag | |
from models import get_google_supported_languages, translate_google | |
from rich import print | |
from tqdm import tqdm | |
from tqdm.asyncio import tqdm_asyncio | |
def print_counts(slug, subjects_dev, subjects_test): | |
print( | |
f"{slug:<25} {len(list(set(subjects_test))):>3} test categories, {len(subjects_test):>6} samples, {len(list(set(subjects_dev))):>3} dev categories, {len(subjects_dev):>6} dev samples" | |
) | |
def print_datasets_analysis(): | |
print("Category counts and sample counts per dataset:") | |
slug1 = "masakhane/afrimmlu" | |
ds1 = _load_dataset(slug1, "eng") | |
print_counts(slug1, ds1["dev"]["subject"], ds1["test"]["subject"]) | |
langs1 = _get_dataset_config_names(slug1) | |
langs1 = [standardize_tag(a, macro=True) for a in langs1] | |
slug2 = "openai/MMMLU" # does not have dev set! – but: these languages are all also present in Global-MMLU | |
ds2 = _load_dataset(slug2, "FR_FR") | |
print_counts(slug2, [], ds2["test"]["Subject"]) | |
langs2 = _get_dataset_config_names(slug2) | |
langs2 = [a.split("_")[0].lower() for a in langs2] | |
langs2.remove("default") | |
slug3 = "CohereForAI/Global-MMLU" | |
ds3 = _load_dataset(slug3, "en") | |
print_counts(slug3, ds3["dev"]["subject"], ds3["test"]["subject"]) | |
langs3 = _get_dataset_config_names(slug3) | |
langs3 = [standardize_tag(a, macro=True) for a in langs3] | |
slug4 = "lighteval/okapi_mmlu" | |
ds4 = _load_dataset(slug4, "ar", trust_remote_code=True) | |
print_counts( | |
slug4, | |
[a.split("/")[0] for a in ds4["dev"]["id"]], | |
[a.split("/")[0] for a in ds4["test"]["id"]], | |
) | |
langs4 = _get_dataset_config_names(slug4) | |
slug5 = "Eurolingua/mmlux" | |
subsets = _get_dataset_config_names(slug5) | |
subjects = set(a.rsplit("_", 1)[0] for a in subsets) | |
rows_test = [ | |
_load_dataset(slug5, subset)["test"]["id"] | |
for subset in subsets | |
if "_DA" in subset | |
] | |
rows_test = [a.split("/")[0] for l in rows_test for a in l] | |
rows_dev = [ | |
_load_dataset(slug5, subset)["dev"]["id"] | |
for subset in subsets | |
if "_DA" in subset | |
] | |
rows_dev = [a.split("/")[0] for l in rows_dev for a in l] | |
print_counts(slug5, rows_dev, rows_test) | |
langs5 = list(set(a.rsplit("_", 1)[1].split("-")[0].lower() for a in subsets)) | |
langs = langs1 + langs2 + langs3 + langs4 + langs5 | |
lang_datasets = defaultdict(list) | |
for slug, langs_list in [ | |
(slug1, langs1), | |
(slug2, langs2), | |
(slug3, langs3), | |
(slug4, langs4), | |
(slug5, langs5), | |
]: | |
for lang in langs_list: | |
lname = Language.get(lang).display_name() | |
lang_datasets[lname].append(slug) | |
print("Datasets per language:") | |
print(sorted(lang_datasets.items())) | |
print(len(set(langs))) | |
print("Datasets per language for languages that are not in Global-MMLU:") | |
print( | |
sorted( | |
(lang, datasets) | |
for lang, datasets in lang_datasets.items() | |
if slug3 not in datasets | |
) | |
) | |
print( | |
Counter( | |
dataset | |
for ds_list in lang_datasets.values() | |
for dataset in ds_list | |
if slug3 not in ds_list | |
) | |
) | |
print(list(set(ds1["test"]["subject"]))) | |
# based on this analysis: | |
# - we drop the OpenAI dataset, since it does not have a dev set, and since every language that it has is also present in Global-MMLU | |
# - we stick to the 5 categories of the AfriMMLU dataset, since this is the most restricted dataset, and these 5 categories are present in all datasets, so this is good for comparability | |
# AfriMMLU is human-translated, but has only 5 task categories | |
# Global-MMLU is mixed-translated, specifically those 15 languages are that are also present in Global-MMLU-Lite, which are mostly from MMMLU; otherwise translated using Google Translate | |
# Okapi-MMLU is translated using ChatGPT (version unclear) | |
# MMLUX is translated using DeepL | |
# Therefore, the priority is: AfriMMLU, Global-MMLU, MMLUX, Okapi-MMLU | |
# print_datasets_analysis() | |
def parse_choices(row): | |
if not isinstance(row["choices"], list): | |
row["choices"] = eval(row["choices"]) | |
return row | |
def add_choices(row): | |
row["choices"] = [ | |
row["option_a"], | |
row["option_b"], | |
row["option_c"], | |
row["option_d"], | |
] | |
return row | |
tags_afrimmlu = { | |
standardize_tag(a, macro=True): a | |
for a in _get_dataset_config_names("masakhane/afrimmlu") | |
} | |
tags_global_mmlu = { | |
standardize_tag(a, macro=True): a | |
for a in _get_dataset_config_names("CohereForAI/Global-MMLU") | |
} | |
tags_okapi = _get_dataset_config_names("lighteval/okapi_mmlu") | |
tags_mmlux = set( | |
a.rsplit("_", 1)[1].split("-")[0].lower() | |
for a in _get_dataset_config_names("Eurolingua/mmlux", trust_remote_code=True) | |
) | |
tags_mmlu_autotranslated = _get_dataset_config_names("fair-forward/mmlu-autotranslated") | |
categories = sorted( | |
list(set(_load_dataset("masakhane/afrimmlu", "eng")["dev"]["subject"])) | |
) | |
async def load_mmlu(language_bcp_47, nr): | |
print(f"Loading MMLU data for {language_bcp_47}...") | |
category = categories[nr % len(categories)] | |
if language_bcp_47 in tags_afrimmlu.keys(): | |
ds = _load_dataset("masakhane/afrimmlu", tags_afrimmlu[language_bcp_47]) | |
ds = ds.map(parse_choices) | |
task = ds["test"].filter(lambda x: x["subject"] == category)[nr] | |
return "masakhane/afrimmlu", task, "human" | |
elif language_bcp_47 in tags_global_mmlu.keys(): | |
ds = _load_dataset("CohereForAI/Global-MMLU", tags_global_mmlu[language_bcp_47]) | |
ds = ds.map(add_choices) | |
task = ds["test"].filter(lambda x: x["subject"] == category)[nr] | |
return "CohereForAI/Global-MMLU", task, "human" | |
# TODO: add in Okapi, MMLUX @Jonas | |
elif language_bcp_47 in tags_mmlu_autotranslated: | |
ds = _load_dataset("fair-forward/mmlu-autotranslated", language_bcp_47) | |
filtered = ds["test"].filter(lambda x: x["subject"] == category) | |
task = filtered[nr] | |
return "fair-forward/mmlu-autotranslated", task, "machine" | |
else: | |
return None, None, None | |
def translate_mmlu(languages): | |
human_translated = [*tags_afrimmlu.keys(), *tags_global_mmlu.keys()] | |
untranslated = [ | |
lang | |
for lang in languages["bcp_47"].values[:150] | |
if lang not in human_translated and lang in get_google_supported_languages() | |
] | |
n_samples = 20 | |
slug = "fair-forward/mmlu-autotranslated" | |
for lang in tqdm(untranslated): | |
# check if already exists on hub | |
try: | |
ds_lang = load_dataset(slug, lang) | |
except (ValueError, Exception): | |
print(f"Translating {lang}...") | |
for split in ["dev", "test"]: | |
ds = _load_dataset("masakhane/afrimmlu", "eng", split=split) | |
samples = [] | |
for category in categories: | |
if split == "dev": | |
samples.extend(ds.filter(lambda x: x["subject"] == category)) | |
else: | |
# Use the same 20 samples that the evaluation pipeline uses (indices 0-19) | |
filtered = ds.filter(lambda x: x["subject"] == category) | |
for i in range(min(n_samples, len(filtered))): | |
task = filtered[i] | |
samples.append(task) | |
questions_tr = [ | |
translate_google(s["question"], "en", lang) for s in samples | |
] | |
questions_tr = asyncio.run(tqdm_asyncio.gather(*questions_tr)) | |
choices_texts_concatenated = [] | |
for s in samples: | |
for choice in eval(s["choices"]): | |
choices_texts_concatenated.append(choice) | |
choices_tr = [ | |
translate_google(c, "en", lang) for c in choices_texts_concatenated | |
] | |
choices_tr = asyncio.run(tqdm_asyncio.gather(*choices_tr)) | |
# group into chunks of 4 | |
choices_tr = [ | |
choices_tr[i : i + 4] for i in range(0, len(choices_tr), 4) | |
] | |
ds_lang = Dataset.from_dict( | |
{ | |
"subject": [s["subject"] for s in samples], | |
"question": questions_tr, | |
"choices": choices_tr, | |
"answer": [s["answer"] for s in samples], | |
} | |
) | |
ds_lang.push_to_hub( | |
slug, | |
split=split, | |
config_name=lang, | |
token=os.getenv("HUGGINGFACE_ACCESS_TOKEN"), | |
) | |
ds_lang.to_json( | |
f"data/translations/mmlu/{lang}_{split}.json", | |
lines=False, | |
force_ascii=False, | |
indent=2, | |
) | |