kaisex commited on
Commit
8528dce
·
verified ·
1 Parent(s): 683bed6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md CHANGED
@@ -12,3 +12,84 @@ short_description: BERT1+BERT2
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
15
+
16
+
17
+ ---
18
+ title: NewFakeNewsModel
19
+ emoji: ⚡
20
+ colorFrom: purple
21
+ colorTo: gray
22
+ sdk: gradio
23
+ sdk_version: 5.34.2
24
+ app_file: app.py
25
+ pinned: false
26
+ license: mit
27
+ short_description: wrk on prgress
28
+ ---
29
+
30
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
31
+
32
+
33
+ # Fake News Classifier (BERT-based)
34
+
35
+ This project detects whether a news article is real or fake using a fine-tuned BERT model for binary text classification.
36
+
37
+ ---
38
+
39
+ ## Disclaimer
40
+
41
+ - This project is for **educational and experimental purposes only**.
42
+ - It is **not suitable for real-world fact-checking** or serious decision-making.
43
+ - The model uses a simple binary classifier and does not verify factual correctness.
44
+
45
+ ---
46
+
47
+ ## Project Overview
48
+
49
+ This fake news classifier was built as part of a research internship to:
50
+
51
+ - Learn how to fine-tune transformer models on classification tasks
52
+ - Practice handling class imbalance using weighted loss
53
+ - Deploy models using Hugging Face-compatible APIs
54
+
55
+ ---
56
+
57
+ ## How It Works
58
+
59
+ - A BERT-based model (`bert-base-uncased`) was fine-tuned on a labeled dataset of news articles.
60
+ - Input text is tokenized using `BertTokenizer`.
61
+ - A custom Trainer with class-weighted loss was used to handle class imbalance.
62
+ - Outputs are binary: **0 = FAKE**, **1 = REAL**.
63
+
64
+ ### Training Details
65
+
66
+ - Model: `BertForSequenceClassification`
67
+ - Epochs: 4
68
+ - Batch size: 8
69
+ - Learning rate: 2e-5
70
+ - Optimizer: AdamW (via Hugging Face Trainer)
71
+ - Evaluation Metrics: Accuracy, F1-score, Precision, Recall
72
+
73
+ ---
74
+
75
+ ## 🛠 Libraries Used
76
+
77
+ - `transformers`
78
+ - `datasets`
79
+ - `torch`
80
+ - `scikit-learn`
81
+ - `pandas`
82
+ - `nltk` (optional preprocessing)
83
+
84
+ ---
85
+
86
+ ## 📦 Installation & Running
87
+
88
+ ```bash
89
+ pip install -r requirements.txt
90
+ python app.py
91
+ ```
92
+
93
+ Or run the training script in a notebook or script environment if you're using Google Colab or Jupyter.
94
+
95
+ ---