Spaces:
Running
Running
fexeak
commited on
Commit
·
dccded3
1
Parent(s):
e992960
add static
Browse files- app.py +202 -12
- requirements.txt +4 -0
app.py
CHANGED
@@ -1,15 +1,30 @@
|
|
1 |
# audio_api.py
|
2 |
import base64
|
3 |
import io
|
|
|
|
|
|
|
|
|
4 |
from typing import Optional
|
5 |
|
6 |
import torch
|
7 |
import torchaudio
|
8 |
-
from fastapi import FastAPI, HTTPException
|
9 |
from fastapi.staticfiles import StaticFiles
|
10 |
from fastapi.responses import FileResponse
|
11 |
from pydantic import BaseModel, Field
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
from boson_multimodal.data_types import ChatMLSample, Message, AudioContent
|
14 |
from boson_multimodal.serve.serve_engine import HiggsAudioServeEngine, HiggsAudioResponse
|
15 |
|
@@ -18,7 +33,24 @@ MODEL_PATH = "bosonai/higgs-audio-v2-generation-3B-base"
|
|
18 |
AUDIO_TOKENIZER_PATH = "bosonai/higgs-audio-v2-tokenizer"
|
19 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# -------------------- FastAPI --------------------
|
24 |
app = FastAPI(title="Higgs Audio Generation API", version="0.1.0")
|
@@ -35,7 +67,16 @@ class AudioResponse(BaseModel):
|
|
35 |
sample_rate: int
|
36 |
|
37 |
@app.post("/generate-audio", response_model=AudioResponse)
|
38 |
-
def generate_audio(req: AudioRequest):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
system_prompt = (
|
40 |
"Generate audio following instruction.\n\n<|scene_desc_start|>\n"
|
41 |
"Audio is recorded from a quiet room.\n<|scene_desc_end|>"
|
@@ -44,8 +85,18 @@ def generate_audio(req: AudioRequest):
|
|
44 |
Message(role="system", content=system_prompt),
|
45 |
Message(role="user", content=req.user_prompt),
|
46 |
]
|
|
|
|
|
47 |
|
48 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
output: HiggsAudioResponse = serve_engine.generate(
|
50 |
chat_ml_sample=ChatMLSample(messages=messages),
|
51 |
max_new_tokens=req.max_new_tokens,
|
@@ -54,21 +105,160 @@ def generate_audio(req: AudioRequest):
|
|
54 |
top_k=req.top_k,
|
55 |
stop_strings=["<|end_of_text|>", "<|eot_id|>"],
|
56 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
except Exception as e:
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
# 新增:把 / 指向静态首页
|
70 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
71 |
|
72 |
@app.get("/", include_in_schema=False)
|
73 |
async def index():
|
74 |
-
return FileResponse("static/index.html")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# audio_api.py
|
2 |
import base64
|
3 |
import io
|
4 |
+
import logging
|
5 |
+
import platform
|
6 |
+
import time
|
7 |
+
from datetime import datetime
|
8 |
from typing import Optional
|
9 |
|
10 |
import torch
|
11 |
import torchaudio
|
12 |
+
from fastapi import FastAPI, HTTPException, Request
|
13 |
from fastapi.staticfiles import StaticFiles
|
14 |
from fastapi.responses import FileResponse
|
15 |
from pydantic import BaseModel, Field
|
16 |
|
17 |
+
# 配置日志
|
18 |
+
logging.basicConfig(
|
19 |
+
level=logging.INFO,
|
20 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
21 |
+
handlers=[
|
22 |
+
logging.FileHandler('audio_generation.log'),
|
23 |
+
logging.StreamHandler()
|
24 |
+
]
|
25 |
+
)
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
|
28 |
from boson_multimodal.data_types import ChatMLSample, Message, AudioContent
|
29 |
from boson_multimodal.serve.serve_engine import HiggsAudioServeEngine, HiggsAudioResponse
|
30 |
|
|
|
33 |
AUDIO_TOKENIZER_PATH = "bosonai/higgs-audio-v2-tokenizer"
|
34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
|
36 |
+
logger.info(f"开始加载模型,设备: {device}")
|
37 |
+
logger.info(f"模型路径: {MODEL_PATH}")
|
38 |
+
logger.info(f"音频分词器路径: {AUDIO_TOKENIZER_PATH}")
|
39 |
+
|
40 |
+
try:
|
41 |
+
model_load_start = time.time()
|
42 |
+
serve_engine = HiggsAudioServeEngine(MODEL_PATH, AUDIO_TOKENIZER_PATH, device=device)
|
43 |
+
model_load_time = time.time() - model_load_start
|
44 |
+
logger.info(f"模型加载成功,耗时: {model_load_time:.2f}秒")
|
45 |
+
|
46 |
+
# 检查GPU内存使用情况
|
47 |
+
if torch.cuda.is_available():
|
48 |
+
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
|
49 |
+
gpu_allocated = torch.cuda.memory_allocated(0) / 1024**3
|
50 |
+
logger.info(f"GPU总内存: {gpu_memory:.2f}GB, 已分配: {gpu_allocated:.2f}GB")
|
51 |
+
except Exception as e:
|
52 |
+
logger.error(f"模型加载失败: {str(e)}")
|
53 |
+
raise
|
54 |
|
55 |
# -------------------- FastAPI --------------------
|
56 |
app = FastAPI(title="Higgs Audio Generation API", version="0.1.0")
|
|
|
67 |
sample_rate: int
|
68 |
|
69 |
@app.post("/generate-audio", response_model=AudioResponse)
|
70 |
+
def generate_audio(req: AudioRequest, request: Request):
|
71 |
+
request_id = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{id(request)}"
|
72 |
+
start_time = time.time()
|
73 |
+
|
74 |
+
logger.info(f"[{request_id}] 收到音频生成请求")
|
75 |
+
logger.info(f"[{request_id}] 客户端IP: {request.client.host if request.client else 'unknown'}")
|
76 |
+
logger.info(f"[{request_id}] 请求参数: user_prompt='{req.user_prompt[:100]}{'...' if len(req.user_prompt) > 100 else ''}', "
|
77 |
+
f"max_new_tokens={req.max_new_tokens}, temperature={req.temperature}, "
|
78 |
+
f"top_p={req.top_p}, top_k={req.top_k}")
|
79 |
+
|
80 |
system_prompt = (
|
81 |
"Generate audio following instruction.\n\n<|scene_desc_start|>\n"
|
82 |
"Audio is recorded from a quiet room.\n<|scene_desc_end|>"
|
|
|
85 |
Message(role="system", content=system_prompt),
|
86 |
Message(role="user", content=req.user_prompt),
|
87 |
]
|
88 |
+
|
89 |
+
logger.debug(f"[{request_id}] 构建的消息: {[{'role': m.role, 'content': m.content[:50] + '...' if len(m.content) > 50 else m.content} for m in messages]}")
|
90 |
|
91 |
try:
|
92 |
+
# 记录GPU内存使用情况(生成前)
|
93 |
+
if torch.cuda.is_available():
|
94 |
+
gpu_memory_before = torch.cuda.memory_allocated(0) / 1024**3
|
95 |
+
logger.debug(f"[{request_id}] 生成前GPU内存使用: {gpu_memory_before:.2f}GB")
|
96 |
+
|
97 |
+
generation_start = time.time()
|
98 |
+
logger.info(f"[{request_id}] 开始音频生成...")
|
99 |
+
|
100 |
output: HiggsAudioResponse = serve_engine.generate(
|
101 |
chat_ml_sample=ChatMLSample(messages=messages),
|
102 |
max_new_tokens=req.max_new_tokens,
|
|
|
105 |
top_k=req.top_k,
|
106 |
stop_strings=["<|end_of_text|>", "<|eot_id|>"],
|
107 |
)
|
108 |
+
|
109 |
+
generation_time = time.time() - generation_start
|
110 |
+
logger.info(f"[{request_id}] 音频生成完成,耗时: {generation_time:.2f}秒")
|
111 |
+
|
112 |
+
# 记录生成的音频信息
|
113 |
+
audio_duration = len(output.audio) / output.sampling_rate
|
114 |
+
logger.info(f"[{request_id}] 生成音频信息: 采样率={output.sampling_rate}Hz, "
|
115 |
+
f"时长={audio_duration:.2f}秒, 样本数={len(output.audio)}")
|
116 |
+
|
117 |
+
# 记录GPU内存使用情况(生成后)
|
118 |
+
if torch.cuda.is_available():
|
119 |
+
gpu_memory_after = torch.cuda.memory_allocated(0) / 1024**3
|
120 |
+
logger.debug(f"[{request_id}] 生成后GPU内存使用: {gpu_memory_after:.2f}GB")
|
121 |
+
|
122 |
+
except Exception as e:
|
123 |
+
error_time = time.time() - start_time
|
124 |
+
logger.error(f"[{request_id}] 音频生成失败,耗时: {error_time:.2f}秒,错误: {str(e)}")
|
125 |
+
logger.exception(f"[{request_id}] 详细错误信息:")
|
126 |
+
raise HTTPException(status_code=500, detail=f"音频生成失败: {str(e)}")
|
127 |
+
|
128 |
+
try:
|
129 |
+
# 音频编码处理
|
130 |
+
encoding_start = time.time()
|
131 |
+
logger.debug(f"[{request_id}] 开始音频编码...")
|
132 |
+
|
133 |
+
# 把 numpy 数组转 torch.Tensor 并编码成 WAV 字节流
|
134 |
+
waveform = torch.from_numpy(output.audio)[None, :] # shape=(1, T)
|
135 |
+
buf = io.BytesIO()
|
136 |
+
torchaudio.save(buf, waveform, output.sampling_rate, format="wav")
|
137 |
+
audio_bytes = buf.getvalue()
|
138 |
+
audio_b64 = base64.b64encode(audio_bytes).decode("utf-8")
|
139 |
+
|
140 |
+
encoding_time = time.time() - encoding_start
|
141 |
+
total_time = time.time() - start_time
|
142 |
+
|
143 |
+
logger.info(f"[{request_id}] 音频编码完成,耗时: {encoding_time:.2f}秒")
|
144 |
+
logger.info(f"[{request_id}] 请求处理完成,总耗时: {total_time:.2f}秒,"
|
145 |
+
f"编码后大小: {len(audio_b64)} 字符")
|
146 |
+
|
147 |
+
return AudioResponse(audio_base64=audio_b64, sample_rate=output.sampling_rate)
|
148 |
+
|
149 |
except Exception as e:
|
150 |
+
error_time = time.time() - start_time
|
151 |
+
logger.error(f"[{request_id}] 音频编码失败,耗时: {error_time:.2f}秒,错误: {str(e)}")
|
152 |
+
logger.exception(f"[{request_id}] 详细错误信息:")
|
153 |
+
raise HTTPException(status_code=500, detail=f"音频编码失败: {str(e)}")
|
154 |
|
155 |
+
# 健康检查端点
|
156 |
+
@app.get("/health")
|
157 |
+
def health_check():
|
158 |
+
"""健康检查端点,返回服务状态信息"""
|
159 |
+
try:
|
160 |
+
# 检查GPU状态
|
161 |
+
gpu_info = {}
|
162 |
+
if torch.cuda.is_available():
|
163 |
+
gpu_info = {
|
164 |
+
"gpu_available": True,
|
165 |
+
"gpu_count": torch.cuda.device_count(),
|
166 |
+
"current_device": torch.cuda.current_device(),
|
167 |
+
"device_name": torch.cuda.get_device_name(0),
|
168 |
+
"memory_allocated_gb": round(torch.cuda.memory_allocated(0) / 1024**3, 2),
|
169 |
+
"memory_reserved_gb": round(torch.cuda.memory_reserved(0) / 1024**3, 2),
|
170 |
+
"memory_total_gb": round(torch.cuda.get_device_properties(0).total_memory / 1024**3, 2)
|
171 |
+
}
|
172 |
+
else:
|
173 |
+
gpu_info = {"gpu_available": False}
|
174 |
+
|
175 |
+
return {
|
176 |
+
"status": "healthy",
|
177 |
+
"timestamp": datetime.now().isoformat(),
|
178 |
+
"device": device,
|
179 |
+
"model_path": MODEL_PATH,
|
180 |
+
"tokenizer_path": AUDIO_TOKENIZER_PATH,
|
181 |
+
"gpu_info": gpu_info
|
182 |
+
}
|
183 |
+
except Exception as e:
|
184 |
+
logger.error(f"健康检查失败: {str(e)}")
|
185 |
+
raise HTTPException(status_code=500, detail=f"健康检查失败: {str(e)}")
|
186 |
|
187 |
+
# 系统信息端点
|
188 |
+
@app.get("/system-info")
|
189 |
+
def system_info():
|
190 |
+
"""返回详细的系统信息"""
|
191 |
+
import psutil
|
192 |
+
import platform
|
193 |
+
|
194 |
+
try:
|
195 |
+
# CPU信息
|
196 |
+
cpu_info = {
|
197 |
+
"cpu_count": psutil.cpu_count(),
|
198 |
+
"cpu_percent": psutil.cpu_percent(interval=1),
|
199 |
+
"cpu_freq": psutil.cpu_freq()._asdict() if psutil.cpu_freq() else None
|
200 |
+
}
|
201 |
+
|
202 |
+
# 内存信息
|
203 |
+
memory = psutil.virtual_memory()
|
204 |
+
memory_info = {
|
205 |
+
"total_gb": round(memory.total / 1024**3, 2),
|
206 |
+
"available_gb": round(memory.available / 1024**3, 2),
|
207 |
+
"used_gb": round(memory.used / 1024**3, 2),
|
208 |
+
"percent": memory.percent
|
209 |
+
}
|
210 |
+
|
211 |
+
# 系统信息
|
212 |
+
system_info = {
|
213 |
+
"platform": platform.platform(),
|
214 |
+
"python_version": platform.python_version(),
|
215 |
+
"torch_version": torch.__version__,
|
216 |
+
"cuda_version": torch.version.cuda if torch.cuda.is_available() else None
|
217 |
+
}
|
218 |
+
|
219 |
+
return {
|
220 |
+
"timestamp": datetime.now().isoformat(),
|
221 |
+
"cpu": cpu_info,
|
222 |
+
"memory": memory_info,
|
223 |
+
"system": system_info
|
224 |
+
}
|
225 |
+
except Exception as e:
|
226 |
+
logger.error(f"获取系统信息失败: {str(e)}")
|
227 |
+
raise HTTPException(status_code=500, detail=f"获取系统信息失败: {str(e)}")
|
228 |
|
229 |
# 新增:把 / 指向静态首页
|
230 |
app.mount("/static", StaticFiles(directory="static"), name="static")
|
231 |
|
232 |
@app.get("/", include_in_schema=False)
|
233 |
async def index():
|
234 |
+
return FileResponse("static/index.html")
|
235 |
+
|
236 |
+
# 启动时记录系统信息
|
237 |
+
@app.on_event("startup")
|
238 |
+
async def startup_event():
|
239 |
+
"""应用启动时的事件处理"""
|
240 |
+
logger.info("=" * 50)
|
241 |
+
logger.info("音频生成API服务启动")
|
242 |
+
logger.info(f"启动时间: {datetime.now().isoformat()}")
|
243 |
+
logger.info(f"Python版本: {platform.python_version()}")
|
244 |
+
logger.info(f"PyTorch版本: {torch.__version__}")
|
245 |
+
logger.info(f"设备: {device}")
|
246 |
+
|
247 |
+
if torch.cuda.is_available():
|
248 |
+
logger.info(f"CUDA版本: {torch.version.cuda}")
|
249 |
+
logger.info(f"GPU设备数量: {torch.cuda.device_count()}")
|
250 |
+
for i in range(torch.cuda.device_count()):
|
251 |
+
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
|
252 |
+
|
253 |
+
logger.info("=" * 50)
|
254 |
+
|
255 |
+
@app.on_event("shutdown")
|
256 |
+
async def shutdown_event():
|
257 |
+
"""应用关闭时的事件处理"""
|
258 |
+
logger.info("音频生成API服务正在关闭...")
|
259 |
+
logger.info(f"关闭时间: {datetime.now().isoformat()}")
|
260 |
+
|
261 |
+
# 清理GPU内存
|
262 |
+
if torch.cuda.is_available():
|
263 |
+
torch.cuda.empty_cache()
|
264 |
+
logger.info("GPU内存已清理")
|
requirements.txt
CHANGED
@@ -1,2 +1,6 @@
|
|
1 |
fastapi
|
2 |
uvicorn[standard]
|
|
|
|
|
|
|
|
|
|
1 |
fastapi
|
2 |
uvicorn[standard]
|
3 |
+
torch
|
4 |
+
torchaudio
|
5 |
+
psutil
|
6 |
+
pydantic
|