Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- blora_utils.py +46 -0
- inference.py +69 -0
- requirements.txt +11 -0
blora_utils.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
BLOCKS = {
|
| 4 |
+
'content': ['unet.up_blocks.0.attentions.0'],
|
| 5 |
+
'style': ['unet.up_blocks.0.attentions.1'],
|
| 6 |
+
}
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def is_belong_to_blocks(key, blocks):
|
| 10 |
+
try:
|
| 11 |
+
for g in blocks:
|
| 12 |
+
if g in key:
|
| 13 |
+
return True
|
| 14 |
+
return False
|
| 15 |
+
except Exception as e:
|
| 16 |
+
raise type(e)(f'failed to is_belong_to_block, due to: {e}')
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def filter_lora(state_dict, blocks_):
|
| 20 |
+
try:
|
| 21 |
+
return {k: v for k, v in state_dict.items() if is_belong_to_blocks(k, blocks_)}
|
| 22 |
+
except Exception as e:
|
| 23 |
+
raise type(e)(f'failed to filter_lora, due to: {e}')
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def scale_lora(state_dict, alpha):
|
| 27 |
+
try:
|
| 28 |
+
return {k: v * alpha for k, v in state_dict.items()}
|
| 29 |
+
except Exception as e:
|
| 30 |
+
raise type(e)(f'failed to scale_lora, due to: {e}')
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def get_target_modules(unet, blocks=None):
|
| 34 |
+
try:
|
| 35 |
+
if not blocks:
|
| 36 |
+
blocks = [('.').join(blk.split('.')[1:]) for blk in BLOCKS['content'] + BLOCKS['style']]
|
| 37 |
+
|
| 38 |
+
attns = [attn_processor_name.rsplit('.', 1)[0] for attn_processor_name, _ in unet.attn_processors.items() if
|
| 39 |
+
is_belong_to_blocks(attn_processor_name, blocks)]
|
| 40 |
+
|
| 41 |
+
target_modules = [f'{attn}.{mat}' for mat in ["to_k", "to_q", "to_v", "to_out.0"] for attn in attns]
|
| 42 |
+
return target_modules
|
| 43 |
+
except Exception as e:
|
| 44 |
+
raise type(e)(f'failed to get_target_modules, due to: {e}')
|
| 45 |
+
|
| 46 |
+
|
inference.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
| 5 |
+
|
| 6 |
+
from blora_utils import BLOCKS, filter_lora, scale_lora
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def parse_args():
|
| 10 |
+
parser = argparse.ArgumentParser()
|
| 11 |
+
parser.add_argument(
|
| 12 |
+
"--prompt", type=str, required=True, help="B-LoRA prompt"
|
| 13 |
+
)
|
| 14 |
+
parser.add_argument(
|
| 15 |
+
"--output_path", type=str, required=True, help="path to save the images"
|
| 16 |
+
)
|
| 17 |
+
parser.add_argument(
|
| 18 |
+
"--content_B_LoRA", type=str, default=None, help="path for the content B-LoRA"
|
| 19 |
+
)
|
| 20 |
+
parser.add_argument(
|
| 21 |
+
"--style_B_LoRA", type=str, default=None, help="path for the style B-LoRA"
|
| 22 |
+
)
|
| 23 |
+
parser.add_argument(
|
| 24 |
+
"--content_alpha", type=float, default=1., help="alpha parameter to scale the content B-LoRA weights"
|
| 25 |
+
)
|
| 26 |
+
parser.add_argument(
|
| 27 |
+
"--style_alpha", type=float, default=1., help="alpha parameter to scale the style B-LoRA weights"
|
| 28 |
+
)
|
| 29 |
+
parser.add_argument(
|
| 30 |
+
"--num_images_per_prompt", type=int, default=4, help="number of images per prompt"
|
| 31 |
+
)
|
| 32 |
+
return parser.parse_args()
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
if __name__ == '__main__':
|
| 36 |
+
args = parse_args()
|
| 37 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
| 38 |
+
pipeline = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
|
| 39 |
+
vae=vae,
|
| 40 |
+
torch_dtype=torch.float16).to("cuda")
|
| 41 |
+
|
| 42 |
+
# Get Content B-LoRA SD
|
| 43 |
+
if args.content_B_LoRA is not None:
|
| 44 |
+
content_B_LoRA_sd, _ = pipeline.lora_state_dict(args.content_B_LoRA)
|
| 45 |
+
content_B_LoRA = filter_lora(content_B_LoRA_sd, BLOCKS['content'])
|
| 46 |
+
content_B_LoRA = scale_lora(content_B_LoRA, args.content_alpha)
|
| 47 |
+
else:
|
| 48 |
+
content_B_LoRA = {}
|
| 49 |
+
|
| 50 |
+
# Get Style B-LoRA SD
|
| 51 |
+
if args.style_B_LoRA is not None:
|
| 52 |
+
style_B_LoRA_sd, _ = pipeline.lora_state_dict(args.style_B_LoRA)
|
| 53 |
+
style_B_LoRA = filter_lora(style_B_LoRA_sd, BLOCKS['style'])
|
| 54 |
+
style_B_LoRA = scale_lora(style_B_LoRA, args.style_alpha)
|
| 55 |
+
else:
|
| 56 |
+
style_B_LoRA = {}
|
| 57 |
+
|
| 58 |
+
# Merge B-LoRAs SD
|
| 59 |
+
res_lora = {**content_B_LoRA, **style_B_LoRA}
|
| 60 |
+
|
| 61 |
+
# Load
|
| 62 |
+
pipeline.load_lora_into_unet(res_lora, None, pipeline.unet)
|
| 63 |
+
|
| 64 |
+
# Generate
|
| 65 |
+
images = pipeline(args.prompt, num_images_per_prompt=args.num_images_per_prompt).images
|
| 66 |
+
|
| 67 |
+
# Save
|
| 68 |
+
for i, img in enumerate(images):
|
| 69 |
+
img.save(f'{args.output_path}/{args.prompt}_{i}.jpg')
|
requirements.txt
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate
|
| 2 |
+
bitsandbytes==0.36.0.post2
|
| 3 |
+
datasets
|
| 4 |
+
diffusers==0.25.0
|
| 5 |
+
ftfy==6.1.1
|
| 6 |
+
huggingface-hub
|
| 7 |
+
Pillow==9.4.0
|
| 8 |
+
python-slugify==7.0.0
|
| 9 |
+
torch
|
| 10 |
+
torchvision
|
| 11 |
+
transformers
|