Create mk
Browse files
mk
ADDED
|
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse, os, sys, glob
|
| 2 |
+
import cv2
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from omegaconf import OmegaConf
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from tqdm import tqdm, trange
|
| 8 |
+
from imwatermark import WatermarkEncoder
|
| 9 |
+
from itertools import islice
|
| 10 |
+
from einops import rearrange
|
| 11 |
+
from torchvision.utils import make_grid
|
| 12 |
+
import time
|
| 13 |
+
from pytorch_lightning import seed_everything
|
| 14 |
+
from torch import autocast
|
| 15 |
+
from contextlib import contextmanager, nullcontext
|
| 16 |
+
|
| 17 |
+
from ldm.util import instantiate_from_config
|
| 18 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
| 19 |
+
from ldm.models.diffusion.plms import PLMSSampler
|
| 20 |
+
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
|
| 21 |
+
|
| 22 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
| 23 |
+
from transformers import AutoFeatureExtractor
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# load safety model
|
| 27 |
+
safety_model_id = "CompVis/stable-diffusion-safety-checker"
|
| 28 |
+
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
|
| 29 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def chunk(it, size):
|
| 33 |
+
it = iter(it)
|
| 34 |
+
return iter(lambda: tuple(islice(it, size)), ())
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def numpy_to_pil(images):
|
| 38 |
+
"""
|
| 39 |
+
Convert a numpy image or a batch of images to a PIL image.
|
| 40 |
+
"""
|
| 41 |
+
if images.ndim == 3:
|
| 42 |
+
images = images[None, ...]
|
| 43 |
+
images = (images * 255).round().astype("uint8")
|
| 44 |
+
pil_images = [Image.fromarray(image) for image in images]
|
| 45 |
+
|
| 46 |
+
return pil_images
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def load_model_from_config(config, ckpt, verbose=False):
|
| 50 |
+
print(f"Loading model from {ckpt}")
|
| 51 |
+
pl_sd = torch.load(ckpt, map_location="cpu")
|
| 52 |
+
if "global_step" in pl_sd:
|
| 53 |
+
print(f"Global Step: {pl_sd['global_step']}")
|
| 54 |
+
sd = pl_sd["state_dict"]
|
| 55 |
+
model = instantiate_from_config(config.model)
|
| 56 |
+
m, u = model.load_state_dict(sd, strict=False)
|
| 57 |
+
if len(m) > 0 and verbose:
|
| 58 |
+
print("missing keys:")
|
| 59 |
+
print(m)
|
| 60 |
+
if len(u) > 0 and verbose:
|
| 61 |
+
print("unexpected keys:")
|
| 62 |
+
print(u)
|
| 63 |
+
|
| 64 |
+
model.cuda()
|
| 65 |
+
model.eval()
|
| 66 |
+
return model
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def put_watermark(img, wm_encoder=None):
|
| 70 |
+
if wm_encoder is not None:
|
| 71 |
+
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
| 72 |
+
img = wm_encoder.encode(img, 'dwtDct')
|
| 73 |
+
img = Image.fromarray(img[:, :, ::-1])
|
| 74 |
+
return img
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def load_replacement(x):
|
| 78 |
+
try:
|
| 79 |
+
hwc = x.shape
|
| 80 |
+
y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0]))
|
| 81 |
+
y = (np.array(y)/255.0).astype(x.dtype)
|
| 82 |
+
assert y.shape == x.shape
|
| 83 |
+
return y
|
| 84 |
+
except Exception:
|
| 85 |
+
return x
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def check_safety(x_image):
|
| 89 |
+
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
|
| 90 |
+
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
|
| 91 |
+
assert x_checked_image.shape[0] == len(has_nsfw_concept)
|
| 92 |
+
for i in range(len(has_nsfw_concept)):
|
| 93 |
+
if has_nsfw_concept[i]:
|
| 94 |
+
x_checked_image[i] = load_replacement(x_checked_image[i])
|
| 95 |
+
return x_checked_image, has_nsfw_concept
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def main():
|
| 99 |
+
parser = argparse.ArgumentParser()
|
| 100 |
+
|
| 101 |
+
parser.add_argument(
|
| 102 |
+
"--prompt",
|
| 103 |
+
type=str,
|
| 104 |
+
nargs="?",
|
| 105 |
+
default="a painting of a virus monster playing guitar",
|
| 106 |
+
help="the prompt to render"
|
| 107 |
+
)
|
| 108 |
+
parser.add_argument(
|
| 109 |
+
"--outdir",
|
| 110 |
+
type=str,
|
| 111 |
+
nargs="?",
|
| 112 |
+
help="dir to write results to",
|
| 113 |
+
default="outputs/txt2img-samples"
|
| 114 |
+
)
|
| 115 |
+
parser.add_argument(
|
| 116 |
+
"--skip_grid",
|
| 117 |
+
action='store_true',
|
| 118 |
+
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
|
| 119 |
+
)
|
| 120 |
+
parser.add_argument(
|
| 121 |
+
"--skip_save",
|
| 122 |
+
action='store_true',
|
| 123 |
+
help="do not save individual samples. For speed measurements.",
|
| 124 |
+
)
|
| 125 |
+
parser.add_argument(
|
| 126 |
+
"--ddim_steps",
|
| 127 |
+
type=int,
|
| 128 |
+
default=50,
|
| 129 |
+
help="number of ddim sampling steps",
|
| 130 |
+
)
|
| 131 |
+
parser.add_argument(
|
| 132 |
+
"--plms",
|
| 133 |
+
action='store_true',
|
| 134 |
+
help="use plms sampling",
|
| 135 |
+
)
|
| 136 |
+
parser.add_argument(
|
| 137 |
+
"--dpm_solver",
|
| 138 |
+
action='store_true',
|
| 139 |
+
help="use dpm_solver sampling",
|
| 140 |
+
)
|
| 141 |
+
parser.add_argument(
|
| 142 |
+
"--laion400m",
|
| 143 |
+
action='store_true',
|
| 144 |
+
help="uses the LAION400M model",
|
| 145 |
+
)
|
| 146 |
+
parser.add_argument(
|
| 147 |
+
"--fixed_code",
|
| 148 |
+
action='store_true',
|
| 149 |
+
help="if enabled, uses the same starting code across samples ",
|
| 150 |
+
)
|
| 151 |
+
parser.add_argument(
|
| 152 |
+
"--ddim_eta",
|
| 153 |
+
type=float,
|
| 154 |
+
default=0.0,
|
| 155 |
+
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
|
| 156 |
+
)
|
| 157 |
+
parser.add_argument(
|
| 158 |
+
"--n_iter",
|
| 159 |
+
type=int,
|
| 160 |
+
default=2,
|
| 161 |
+
help="sample this often",
|
| 162 |
+
)
|
| 163 |
+
parser.add_argument(
|
| 164 |
+
"--H",
|
| 165 |
+
type=int,
|
| 166 |
+
default=512,
|
| 167 |
+
help="image height, in pixel space",
|
| 168 |
+
)
|
| 169 |
+
parser.add_argument(
|
| 170 |
+
"--W",
|
| 171 |
+
type=int,
|
| 172 |
+
default=512,
|
| 173 |
+
help="image width, in pixel space",
|
| 174 |
+
)
|
| 175 |
+
parser.add_argument(
|
| 176 |
+
"--C",
|
| 177 |
+
type=int,
|
| 178 |
+
default=4,
|
| 179 |
+
help="latent channels",
|
| 180 |
+
)
|
| 181 |
+
parser.add_argument(
|
| 182 |
+
"--f",
|
| 183 |
+
type=int,
|
| 184 |
+
default=8,
|
| 185 |
+
help="downsampling factor",
|
| 186 |
+
)
|
| 187 |
+
parser.add_argument(
|
| 188 |
+
"--n_samples",
|
| 189 |
+
type=int,
|
| 190 |
+
default=3,
|
| 191 |
+
help="how many samples to produce for each given prompt. A.k.a. batch size",
|
| 192 |
+
)
|
| 193 |
+
parser.add_argument(
|
| 194 |
+
"--n_rows",
|
| 195 |
+
type=int,
|
| 196 |
+
default=0,
|
| 197 |
+
help="rows in the grid (default: n_samples)",
|
| 198 |
+
)
|
| 199 |
+
parser.add_argument(
|
| 200 |
+
"--scale",
|
| 201 |
+
type=float,
|
| 202 |
+
default=7.5,
|
| 203 |
+
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
| 204 |
+
)
|
| 205 |
+
parser.add_argument(
|
| 206 |
+
"--from-file",
|
| 207 |
+
type=str,
|
| 208 |
+
help="if specified, load prompts from this file",
|
| 209 |
+
)
|
| 210 |
+
parser.add_argument(
|
| 211 |
+
"--config",
|
| 212 |
+
type=str,
|
| 213 |
+
default="configs/stable-diffusion/v1-inference.yaml",
|
| 214 |
+
help="path to config which constructs model",
|
| 215 |
+
)
|
| 216 |
+
parser.add_argument(
|
| 217 |
+
"--ckpt",
|
| 218 |
+
type=str,
|
| 219 |
+
default="models/ldm/stable-diffusion-v1/model.ckpt",
|
| 220 |
+
help="path to checkpoint of model",
|
| 221 |
+
)
|
| 222 |
+
parser.add_argument(
|
| 223 |
+
"--seed",
|
| 224 |
+
type=int,
|
| 225 |
+
default=42,
|
| 226 |
+
help="the seed (for reproducible sampling)",
|
| 227 |
+
)
|
| 228 |
+
parser.add_argument(
|
| 229 |
+
"--precision",
|
| 230 |
+
type=str,
|
| 231 |
+
help="evaluate at this precision",
|
| 232 |
+
choices=["full", "autocast"],
|
| 233 |
+
default="autocast"
|
| 234 |
+
)
|
| 235 |
+
opt = parser.parse_args()
|
| 236 |
+
|
| 237 |
+
if opt.laion400m:
|
| 238 |
+
print("Falling back to LAION 400M model...")
|
| 239 |
+
opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml"
|
| 240 |
+
opt.ckpt = "models/ldm/text2img-large/model.ckpt"
|
| 241 |
+
opt.outdir = "outputs/txt2img-samples-laion400m"
|
| 242 |
+
|
| 243 |
+
seed_everything(opt.seed)
|
| 244 |
+
|
| 245 |
+
config = OmegaConf.load(f"{opt.config}")
|
| 246 |
+
model = load_model_from_config(config, f"{opt.ckpt}")
|
| 247 |
+
|
| 248 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 249 |
+
model = model.to(device)
|
| 250 |
+
|
| 251 |
+
if opt.dpm_solver:
|
| 252 |
+
sampler = DPMSolverSampler(model)
|
| 253 |
+
elif opt.plms:
|
| 254 |
+
sampler = PLMSSampler(model)
|
| 255 |
+
else:
|
| 256 |
+
sampler = DDIMSampler(model)
|
| 257 |
+
|
| 258 |
+
os.makedirs(opt.outdir, exist_ok=True)
|
| 259 |
+
outpath = opt.outdir
|
| 260 |
+
|
| 261 |
+
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
|
| 262 |
+
wm = "StableDiffusionV1"
|
| 263 |
+
wm_encoder = WatermarkEncoder()
|
| 264 |
+
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
|
| 265 |
+
|
| 266 |
+
batch_size = opt.n_samples
|
| 267 |
+
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
|
| 268 |
+
if not opt.from_file:
|
| 269 |
+
prompt = opt.prompt
|
| 270 |
+
assert prompt is not None
|
| 271 |
+
data = [batch_size * [prompt]]
|
| 272 |
+
|
| 273 |
+
else:
|
| 274 |
+
print(f"reading prompts from {opt.from_file}")
|
| 275 |
+
with open(opt.from_file, "r") as f:
|
| 276 |
+
data = f.read().splitlines()
|
| 277 |
+
data = list(chunk(data, batch_size))
|
| 278 |
+
|
| 279 |
+
sample_path = os.path.join(outpath, "samples")
|
| 280 |
+
os.makedirs(sample_path, exist_ok=True)
|
| 281 |
+
base_count = len(os.listdir(sample_path))
|
| 282 |
+
grid_count = len(os.listdir(outpath)) - 1
|
| 283 |
+
|
| 284 |
+
start_code = None
|
| 285 |
+
if opt.fixed_code:
|
| 286 |
+
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
|
| 287 |
+
|
| 288 |
+
precision_scope = autocast if opt.precision=="autocast" else nullcontext
|
| 289 |
+
with torch.no_grad():
|
| 290 |
+
with precision_scope("cuda"):
|
| 291 |
+
with model.ema_scope():
|
| 292 |
+
tic = time.time()
|
| 293 |
+
all_samples = list()
|
| 294 |
+
for n in trange(opt.n_iter, desc="Sampling"):
|
| 295 |
+
for prompts in tqdm(data, desc="data"):
|
| 296 |
+
uc = None
|
| 297 |
+
if opt.scale != 1.0:
|
| 298 |
+
uc = model.get_learned_conditioning(batch_size * [""])
|
| 299 |
+
if isinstance(prompts, tuple):
|
| 300 |
+
prompts = list(prompts)
|
| 301 |
+
c = model.get_learned_conditioning(prompts)
|
| 302 |
+
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
|
| 303 |
+
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
| 304 |
+
conditioning=c,
|
| 305 |
+
batch_size=opt.n_samples,
|
| 306 |
+
shape=shape,
|
| 307 |
+
verbose=False,
|
| 308 |
+
unconditional_guidance_scale=opt.scale,
|
| 309 |
+
unconditional_conditioning=uc,
|
| 310 |
+
eta=opt.ddim_eta,
|
| 311 |
+
x_T=start_code)
|
| 312 |
+
|
| 313 |
+
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
| 314 |
+
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
| 315 |
+
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
|
| 316 |
+
|
| 317 |
+
x_checked_image = x_samples_ddim
|
| 318 |
+
|
| 319 |
+
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
|
| 320 |
+
|
| 321 |
+
if not opt.skip_save:
|
| 322 |
+
for x_sample in x_checked_image_torch:
|
| 323 |
+
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
| 324 |
+
img = Image.fromarray(x_sample.astype(np.uint8))
|
| 325 |
+
img = put_watermark(img, wm_encoder)
|
| 326 |
+
img.save(os.path.join(sample_path, f"{base_count:05}.png"))
|
| 327 |
+
base_count += 1
|
| 328 |
+
|
| 329 |
+
if not opt.skip_grid:
|
| 330 |
+
all_samples.append(x_checked_image_torch)
|
| 331 |
+
|
| 332 |
+
if not opt.skip_grid:
|
| 333 |
+
# additionally, save as grid
|
| 334 |
+
grid = torch.stack(all_samples, 0)
|
| 335 |
+
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
| 336 |
+
grid = make_grid(grid, nrow=n_rows)
|
| 337 |
+
|
| 338 |
+
# to image
|
| 339 |
+
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
| 340 |
+
img = Image.fromarray(grid.astype(np.uint8))
|
| 341 |
+
img = put_watermark(img, wm_encoder)
|
| 342 |
+
img.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
| 343 |
+
grid_count += 1
|
| 344 |
+
|
| 345 |
+
toc = time.time()
|
| 346 |
+
|
| 347 |
+
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
| 348 |
+
f" \nEnjoy.")
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
if __name__ == "__main__":
|
| 352 |
+
main()
|