Create models/mbart50.py
Browse files- models/mbart50.py +125 -0
models/mbart50.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
|
| 4 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from transformers import MBart50Tokenizer, MBartForConditionalGeneration # type: ignore
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
from peft import LoraConfig, get_peft_model, TaskType
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
import wandb
|
| 12 |
+
import json
|
| 13 |
+
from utils.helper import TextPreprocessor
|
| 14 |
+
from utils.trainer import train_model
|
| 15 |
+
|
| 16 |
+
load_dotenv()
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class MBart50Finetuner:
|
| 20 |
+
"""Class to handle fine-tuning of mBART50 model for translation tasks."""
|
| 21 |
+
|
| 22 |
+
def __init__(self, config_path="config.json"):
|
| 23 |
+
"""Initialize with configuration file."""
|
| 24 |
+
with open(config_path, "r") as json_file:
|
| 25 |
+
cfg = json.load(json_file)
|
| 26 |
+
|
| 27 |
+
self.args = cfg["mbart50"]["args"]
|
| 28 |
+
self.lora_config = cfg["mbart50"]["lora_config"]
|
| 29 |
+
|
| 30 |
+
# Constants
|
| 31 |
+
self.max_len = self.args["max_len"]
|
| 32 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 33 |
+
self.id = self.args["id"]
|
| 34 |
+
self.initial_learning_rate = self.args["initial_learning_rate"]
|
| 35 |
+
self.model_name = self.args["model_name"]
|
| 36 |
+
self.src_lang = self.args["src_lang"]
|
| 37 |
+
self.tgt_lang = self.args["tgt_lang"]
|
| 38 |
+
self.wandb_project = self.args["wandb_project"]
|
| 39 |
+
self.output_dir = self.args["output_dir"]
|
| 40 |
+
self.name = "mbart50"
|
| 41 |
+
|
| 42 |
+
self.model = None
|
| 43 |
+
self.tokenizer = None
|
| 44 |
+
self.train_dataset = None
|
| 45 |
+
self.val_dataset = None
|
| 46 |
+
self.test_dataset = None
|
| 47 |
+
|
| 48 |
+
def setup_wandb(self):
|
| 49 |
+
"""Initialize Weights & Biases for experiment tracking."""
|
| 50 |
+
wandb.login(key=os.environ.get("WANDB_API"), relogin=True)
|
| 51 |
+
wandb.init(project=self.wandb_project, name="mbart50-finetune-lora")
|
| 52 |
+
|
| 53 |
+
def load_model_and_tokenizer(self):
|
| 54 |
+
"""Load the mBART model and tokenizer."""
|
| 55 |
+
self.tokenizer = MBart50Tokenizer.from_pretrained(self.model_name)
|
| 56 |
+
self.model = MBartForConditionalGeneration.from_pretrained(self.model_name)
|
| 57 |
+
self.tokenizer.src_lang = self.src_lang
|
| 58 |
+
self.tokenizer.tgt_lang = self.tgt_lang
|
| 59 |
+
|
| 60 |
+
def load_datasets(self):
|
| 61 |
+
"""Load training, validation, and test datasets."""
|
| 62 |
+
data_files = {
|
| 63 |
+
"train": "data/train_cleaned_dataset.csv",
|
| 64 |
+
"test": "data/test_cleaned_dataset.csv",
|
| 65 |
+
"val": "data/val_cleaned_dataset.csv",
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
if self.id is not None:
|
| 69 |
+
training_parts = [
|
| 70 |
+
f"[{(i * 200000) + 1 if i > 0 else ''}:{(i + 1) * 200000 if i < 10 else ''}]"
|
| 71 |
+
for i in range(11)
|
| 72 |
+
]
|
| 73 |
+
self.train_dataset = load_dataset(
|
| 74 |
+
"csv", data_files=data_files, split=f"train{training_parts[self.id]}"
|
| 75 |
+
)
|
| 76 |
+
self.test_dataset = load_dataset("csv", data_files=data_files, split="test")
|
| 77 |
+
self.val_dataset = load_dataset(
|
| 78 |
+
"csv", data_files=data_files, split="val[:20000]"
|
| 79 |
+
)
|
| 80 |
+
else:
|
| 81 |
+
self.train_dataset = load_dataset(
|
| 82 |
+
"csv", data_files=data_files, split="train[:1000000]"
|
| 83 |
+
)
|
| 84 |
+
self.test_dataset = load_dataset("csv", data_files=data_files, split="test[:100000]")
|
| 85 |
+
self.val_dataset = load_dataset("csv", data_files=data_files, split="val[:100000]")
|
| 86 |
+
|
| 87 |
+
def configure_lora(self):
|
| 88 |
+
"""Apply LoRA configuration to the model."""
|
| 89 |
+
lora_config = LoraConfig(
|
| 90 |
+
task_type=TaskType.SEQ_2_SEQ_LM,
|
| 91 |
+
r=self.lora_config["r"],
|
| 92 |
+
lora_alpha=self.lora_config["lora_alpha"],
|
| 93 |
+
target_modules=self.lora_config["target_modules"],
|
| 94 |
+
lora_dropout=self.lora_config["lora_dropout"],
|
| 95 |
+
)
|
| 96 |
+
self.model = get_peft_model(self.model, lora_config) # type: ignore
|
| 97 |
+
|
| 98 |
+
def finetune(self):
|
| 99 |
+
"""Orchestrate the fine-tuning process."""
|
| 100 |
+
self.setup_wandb()
|
| 101 |
+
self.load_model_and_tokenizer()
|
| 102 |
+
self.load_datasets()
|
| 103 |
+
|
| 104 |
+
preprocessor = TextPreprocessor(self.tokenizer, self.max_len, name="mbart50")
|
| 105 |
+
tokenized_train_dataset = preprocessor.preprocess_dataset(self.train_dataset)
|
| 106 |
+
tokenized_eval_dataset = preprocessor.preprocess_dataset(self.val_dataset)
|
| 107 |
+
|
| 108 |
+
self.configure_lora()
|
| 109 |
+
self.model.print_trainable_parameters() # type: ignore
|
| 110 |
+
|
| 111 |
+
train_model(
|
| 112 |
+
model=self.model,
|
| 113 |
+
tokenizer=self.tokenizer,
|
| 114 |
+
train_dataset=tokenized_train_dataset,
|
| 115 |
+
eval_dataset=tokenized_eval_dataset,
|
| 116 |
+
output_dir=self.output_dir,
|
| 117 |
+
initial_learning_rate=self.initial_learning_rate,
|
| 118 |
+
name=self.name,
|
| 119 |
+
val_dataset=self.val_dataset,
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
if __name__ == "__main__":
|
| 124 |
+
finetuner = MBart50Finetuner()
|
| 125 |
+
finetuner.finetune()
|