F-G Fernandez
commited on
Commit
·
546db7e
1
Parent(s):
bcbd897
feat: update gradio build
Browse files- Dockerfile +23 -0
- README.md +6 -3
- app.py +0 -71
- requirements.txt +5 -5
- src/gradio_app.py +91 -0
Dockerfile
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.13.5-slim
|
| 2 |
+
|
| 3 |
+
WORKDIR /app
|
| 4 |
+
|
| 5 |
+
RUN apt-get update && apt-get install -y \
|
| 6 |
+
build-essential \
|
| 7 |
+
curl \
|
| 8 |
+
git \
|
| 9 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 10 |
+
|
| 11 |
+
COPY requirements.txt ./
|
| 12 |
+
RUN --mount=from=ghcr.io/astral-sh/uv:0.9.5,source=/uv,target=/bin/uv \
|
| 13 |
+
--mount=type=cache,target=/root/.cache/uv \
|
| 14 |
+
--mount=type=bind,source=src.txt,target=requirements.txt \
|
| 15 |
+
UV_TORCH_BACKEND='cpu' uv pip install --system -r requirements.txt
|
| 16 |
+
|
| 17 |
+
COPY src/ ./src/
|
| 18 |
+
|
| 19 |
+
EXPOSE 8501
|
| 20 |
+
|
| 21 |
+
HEALTHCHECK CMD curl --fail http://localhost:8501
|
| 22 |
+
|
| 23 |
+
ENTRYPOINT ["python", "src/gradio_app.py", "--port=3000", "--repo=frgfm/rexnet1_0x"]
|
README.md
CHANGED
|
@@ -3,10 +3,13 @@ title: Holocron
|
|
| 3 |
emoji: 👁️🗨️
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: purple
|
| 6 |
-
sdk:
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
license: apache-2.0
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
# Configuration
|
|
|
|
| 3 |
emoji: 👁️🗨️
|
| 4 |
colorFrom: gray
|
| 5 |
colorTo: purple
|
| 6 |
+
sdk: docker
|
| 7 |
+
app_port: 8501
|
| 8 |
+
tags:
|
| 9 |
+
- gradio
|
| 10 |
+
pinned: true
|
| 11 |
license: apache-2.0
|
| 12 |
+
short_description: PyTorch implementations of recent Computer Vision tricks (ReXNet, RepVGG, Unet3p, YOLOv4, CIoU loss, AdaBelief, PolyLoss, MobileOne).
|
| 13 |
---
|
| 14 |
|
| 15 |
# Configuration
|
app.py
DELETED
|
@@ -1,71 +0,0 @@
|
|
| 1 |
-
# Copyright (C) 2022, François-Guillaume Fernandez.
|
| 2 |
-
|
| 3 |
-
# This program is licensed under the Apache License 2.0.
|
| 4 |
-
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
|
| 5 |
-
|
| 6 |
-
import argparse
|
| 7 |
-
import json
|
| 8 |
-
|
| 9 |
-
import gradio as gr
|
| 10 |
-
import numpy as np
|
| 11 |
-
import onnxruntime
|
| 12 |
-
from huggingface_hub import hf_hub_download
|
| 13 |
-
from PIL import Image
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
REPO = "frgfm/rexnet1_0x"
|
| 17 |
-
|
| 18 |
-
# Download model config & checkpoint
|
| 19 |
-
with open(hf_hub_download(REPO, filename="config.json"), "rb") as f:
|
| 20 |
-
cfg = json.load(f)
|
| 21 |
-
|
| 22 |
-
ort_session = onnxruntime.InferenceSession(hf_hub_download(REPO, filename="model.onnx"))
|
| 23 |
-
|
| 24 |
-
def preprocess_image(pil_img: Image.Image) -> np.ndarray:
|
| 25 |
-
"""Preprocess an image for inference
|
| 26 |
-
|
| 27 |
-
Args:
|
| 28 |
-
pil_img: a valid pillow image
|
| 29 |
-
|
| 30 |
-
Returns:
|
| 31 |
-
the resized and normalized image of shape (1, C, H, W)
|
| 32 |
-
"""
|
| 33 |
-
|
| 34 |
-
# Resizing (PIL takes (W, H) order for resizing)
|
| 35 |
-
img = pil_img.resize(cfg["input_shape"][-2:][::-1], Image.BILINEAR)
|
| 36 |
-
# (H, W, C) --> (C, H, W)
|
| 37 |
-
img = np.asarray(img).transpose((2, 0, 1)).astype(np.float32) / 255
|
| 38 |
-
# Normalization
|
| 39 |
-
img -= np.array(cfg["mean"])[:, None, None]
|
| 40 |
-
img /= np.array(cfg["std"])[:, None, None]
|
| 41 |
-
|
| 42 |
-
return img[None, ...]
|
| 43 |
-
|
| 44 |
-
def predict(image):
|
| 45 |
-
# Preprocessing
|
| 46 |
-
np_img = preprocess_image(image)
|
| 47 |
-
ort_input = {ort_session.get_inputs()[0].name: np_img}
|
| 48 |
-
|
| 49 |
-
# Inference
|
| 50 |
-
ort_out = ort_session.run(None, ort_input)
|
| 51 |
-
# Post-processing
|
| 52 |
-
out_exp = np.exp(ort_out[0][0])
|
| 53 |
-
probs = out_exp / out_exp.sum()
|
| 54 |
-
|
| 55 |
-
return {class_name: float(conf) for class_name, conf in zip(cfg["classes"], probs)}
|
| 56 |
-
|
| 57 |
-
img = gr.inputs.Image(type="pil")
|
| 58 |
-
outputs = gr.outputs.Label(num_top_classes=3)
|
| 59 |
-
|
| 60 |
-
gr.Interface(
|
| 61 |
-
fn=predict,
|
| 62 |
-
inputs=[img],
|
| 63 |
-
outputs=outputs,
|
| 64 |
-
title="Holocron: image classification demo",
|
| 65 |
-
article=(
|
| 66 |
-
"<p style='text-align: center'><a href='https://github.com/frgfm/Holocron'>"
|
| 67 |
-
"Github Repo</a> | "
|
| 68 |
-
"<a href='https://frgfm.github.io/Holocron/'>Documentation</a></p>"
|
| 69 |
-
),
|
| 70 |
-
live=True,
|
| 71 |
-
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
gradio>=
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
| 1 |
+
gradio>=5.0.0,<6.0.0
|
| 2 |
+
huggingface-hub>=1.0.0,<2.0.0
|
| 3 |
+
numpy>=1.19.5,<3.0.0
|
| 4 |
+
onnxruntime>=1.22.0,<2.0.0
|
| 5 |
+
Pillow>=8.4.0,!=9.2.0
|
src/gradio_app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2022-2025, François-Guillaume Fernandez.
|
| 2 |
+
|
| 3 |
+
# This program is licensed under the Apache License 2.0.
|
| 4 |
+
# See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details.
|
| 5 |
+
|
| 6 |
+
# /// script
|
| 7 |
+
# requires-python = ">=3.11"
|
| 8 |
+
# dependencies = [
|
| 9 |
+
# "gradio>=5.0.0,<6.0.0",
|
| 10 |
+
# "huggingface-hub>=1.0.0,<2.0.0",
|
| 11 |
+
# "numpy>=1.19.5,<3.0.0",
|
| 12 |
+
# "onnxruntime>=1.22.0,<2.0.0",
|
| 13 |
+
# "Pillow>=8.4.0,!=9.2.0",
|
| 14 |
+
# ]
|
| 15 |
+
# ///
|
| 16 |
+
|
| 17 |
+
import json
|
| 18 |
+
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
|
| 21 |
+
import gradio as gr
|
| 22 |
+
import numpy as np
|
| 23 |
+
import onnxruntime
|
| 24 |
+
from huggingface_hub import hf_hub_download
|
| 25 |
+
from PIL import Image
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def main(args):
|
| 29 |
+
# Download model config & checkpoint
|
| 30 |
+
with Path(hf_hub_download(args.repo, filename="config.json")).open("rb") as f:
|
| 31 |
+
cfg = json.load(f)
|
| 32 |
+
|
| 33 |
+
ort_session = onnxruntime.InferenceSession(hf_hub_download(args.repo, filename="model.onnx"))
|
| 34 |
+
|
| 35 |
+
def preprocess_image(pil_img: Image.Image) -> np.ndarray:
|
| 36 |
+
"""Preprocess an image for inference
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
pil_img: a valid pillow image
|
| 40 |
+
|
| 41 |
+
Returns:
|
| 42 |
+
the resized and normalized image of shape (1, C, H, W)
|
| 43 |
+
"""
|
| 44 |
+
# Resizing (PIL takes (W, H) order for resizing)
|
| 45 |
+
img = pil_img.resize(cfg["input_shape"][-2:][::-1], Image.BILINEAR)
|
| 46 |
+
# (H, W, C) --> (C, H, W)
|
| 47 |
+
img = np.asarray(img).transpose((2, 0, 1)).astype(np.float32) / 255
|
| 48 |
+
# Normalization
|
| 49 |
+
img -= np.array(cfg["mean"])[:, None, None]
|
| 50 |
+
img /= np.array(cfg["std"])[:, None, None]
|
| 51 |
+
|
| 52 |
+
return img[None, ...]
|
| 53 |
+
|
| 54 |
+
def predict(image):
|
| 55 |
+
# Preprocessing
|
| 56 |
+
np_img = preprocess_image(image)
|
| 57 |
+
ort_input = {ort_session.get_inputs()[0].name: np_img}
|
| 58 |
+
|
| 59 |
+
# Inference
|
| 60 |
+
ort_out = ort_session.run(None, ort_input)
|
| 61 |
+
# Post-processing
|
| 62 |
+
out_exp = np.exp(ort_out[0][0])
|
| 63 |
+
probs = out_exp / out_exp.sum()
|
| 64 |
+
|
| 65 |
+
return {class_name: float(conf) for class_name, conf in zip(cfg["classes"], probs, strict=True)}
|
| 66 |
+
|
| 67 |
+
interface = gr.Interface(
|
| 68 |
+
fn=predict,
|
| 69 |
+
inputs=gr.Image(type="pil"),
|
| 70 |
+
outputs=gr.Label(num_top_classes=3),
|
| 71 |
+
title="Holocron: image classification demo",
|
| 72 |
+
article=(
|
| 73 |
+
"<p style='text-align: center'><a href='https://github.com/frgfm/holocron'>"
|
| 74 |
+
"Github Repo</a> | "
|
| 75 |
+
"<a href='https://frgfm.github.io/holocron/'>Documentation</a></p>"
|
| 76 |
+
),
|
| 77 |
+
live=True,
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
interface.launch(server_port=args.port, show_error=True)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
if __name__ == "__main__":
|
| 84 |
+
parser = ArgumentParser(
|
| 85 |
+
description="Holocron image classification demo", formatter_class=ArgumentDefaultsHelpFormatter
|
| 86 |
+
)
|
| 87 |
+
parser.add_argument("--repo", type=str, default="frgfm/rexnet1_0x", help="HF Hub repo to use")
|
| 88 |
+
parser.add_argument("--port", type=int, default=8001, help="Port on which the webserver will be run")
|
| 89 |
+
args = parser.parse_args()
|
| 90 |
+
|
| 91 |
+
main(args)
|