import subprocess import gradio as gr from huggingface_hub import hf_hub_download subprocess.run("pip install llama_cpp_python==0.3.1", shell=True) from llama_cpp import Llama # Download GGUF model into HF Space storage model_path = hf_hub_download( repo_id="ft-lora/llama3.2-1b-gguf-auto", filename="llama3.2-1b-instruct-finetuned.gguf" ) llm = Llama( model_path=model_path, n_ctx=2048, use_mmap=True, # use memory-mapped file to load a model chat_format="llama-3", ) def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for conv in history: messages.append(conv) # add historical converational turns into history messages.append({"role": "user", "content": message}) response = "" for chunk in llm.create_chat_completion( messages=messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): delta = chunk["choices"][0]["delta"] token = delta.get("content", "") response += token yield response chatbot = gr.ChatInterface( respond, type="messages", additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) demo = gr.Blocks() with demo: chatbot.render() if __name__ == "__main__": demo.launch()