|
import torch |
|
import torch.nn.functional as F |
|
from torchcomp import compexp_gain, db2amp |
|
from torchlpc import sample_wise_lpc |
|
from typing import List, Tuple, Union, Any, Optional |
|
import math |
|
|
|
|
|
def inv_22(a, b, c, d): |
|
return torch.stack([d, -b, -c, a]).view(2, 2) / (a * d - b * c) |
|
|
|
|
|
def eig_22(a, b, c, d): |
|
|
|
T = a + d |
|
D = a * d - b * c |
|
half_T = T * 0.5 |
|
root = torch.sqrt(half_T * half_T - D) |
|
L = torch.stack([half_T + root, half_T - root]) |
|
|
|
y = (L - a) / b |
|
|
|
V = torch.stack([torch.ones_like(y), y]) |
|
return L, V / V.abs().square().sum(0).sqrt() |
|
|
|
|
|
def fir(x, b): |
|
padded = F.pad(x.reshape(-1, 1, x.size(-1)), (b.size(0) - 1, 0)) |
|
return F.conv1d(padded, b.flip(0).view(1, 1, -1)).view(*x.shape) |
|
|
|
|
|
def allpole(x: torch.Tensor, a: torch.Tensor): |
|
h = x.reshape(-1, x.shape[-1]) |
|
return sample_wise_lpc( |
|
h, |
|
a.broadcast_to(h.shape + a.shape), |
|
).reshape(*x.shape) |
|
|
|
|
|
def biquad(x: torch.Tensor, b0, b1, b2, a0, a1, a2): |
|
b0 = b0 / a0 |
|
b1 = b1 / a0 |
|
b2 = b2 / a0 |
|
a1 = a1 / a0 |
|
a2 = a2 / a0 |
|
|
|
beta1 = b1 - b0 * a1 |
|
beta2 = b2 - b0 * a2 |
|
|
|
tmp = a1.square() - 4 * a2 |
|
if tmp < 0: |
|
pole = 0.5 * (-a1 + 1j * torch.sqrt(-tmp)) |
|
u = -1j * x[..., :-1] |
|
h = sample_wise_lpc( |
|
u.reshape(-1, u.shape[-1]), |
|
-pole.broadcast_to(u.shape).reshape(-1, u.shape[-1], 1), |
|
).reshape(*u.shape) |
|
h = ( |
|
h.real * (beta1 * pole.real / pole.imag + beta2 / pole.imag) |
|
- beta1 * h.imag |
|
) |
|
else: |
|
L, V = eig_22(-a1, -a2, torch.ones_like(a1), torch.zeros_like(a1)) |
|
inv_V = inv_22(*V.view(-1)) |
|
|
|
C = torch.stack([beta1, beta2]) @ V |
|
|
|
|
|
h = x[..., :-1].unsqueeze(-2) * inv_V[:, :1] |
|
L = L.unsqueeze(-1).broadcast_to(h.shape) |
|
|
|
h = ( |
|
sample_wise_lpc(h.reshape(-1, h.shape[-1]), -L.reshape(-1, L.shape[-1], 1)) |
|
.reshape(*h.shape) |
|
.transpose(-2, -1) |
|
) @ C |
|
tmp = b0 * x |
|
y = torch.cat([tmp[..., :1], h + tmp[..., 1:]], -1) |
|
return y |
|
|
|
|
|
def highpass_biquad_coef( |
|
sample_rate: int, |
|
cutoff_freq: torch.Tensor, |
|
Q: torch.Tensor, |
|
): |
|
w0 = 2 * torch.pi * cutoff_freq / sample_rate |
|
alpha = torch.sin(w0) / 2.0 / Q |
|
|
|
b0 = (1 + torch.cos(w0)) / 2 |
|
b1 = -1 - torch.cos(w0) |
|
b2 = b0 |
|
a0 = 1 + alpha |
|
a1 = -2 * torch.cos(w0) |
|
a2 = 1 - alpha |
|
return b0, b1, b2, a0, a1, a2 |
|
|
|
|
|
def apply_biquad(bq): |
|
return lambda waveform, *args, **kwargs: biquad(waveform, *bq(*args, **kwargs)) |
|
|
|
|
|
highpass_biquad = apply_biquad(highpass_biquad_coef) |
|
|
|
|
|
def lowpass_biquad_coef( |
|
sample_rate: int, |
|
cutoff_freq: torch.Tensor, |
|
Q: torch.Tensor, |
|
): |
|
w0 = 2 * torch.pi * cutoff_freq / sample_rate |
|
alpha = torch.sin(w0) / 2 / Q |
|
|
|
b0 = (1 - torch.cos(w0)) / 2 |
|
b1 = 1 - torch.cos(w0) |
|
b2 = b0 |
|
a0 = 1 + alpha |
|
a1 = -2 * torch.cos(w0) |
|
a2 = 1 - alpha |
|
return b0, b1, b2, a0, a1, a2 |
|
|
|
|
|
def equalizer_biquad_coef( |
|
sample_rate: int, |
|
center_freq: torch.Tensor, |
|
gain: torch.Tensor, |
|
Q: torch.Tensor, |
|
): |
|
|
|
w0 = 2 * torch.pi * center_freq / sample_rate |
|
A = torch.exp(gain / 40.0 * math.log(10)) |
|
alpha = torch.sin(w0) / 2 / Q |
|
|
|
b0 = 1 + alpha * A |
|
b1 = -2 * torch.cos(w0) |
|
b2 = 1 - alpha * A |
|
|
|
a0 = 1 + alpha / A |
|
a1 = -2 * torch.cos(w0) |
|
a2 = 1 - alpha / A |
|
return b0, b1, b2, a0, a1, a2 |
|
|
|
|
|
def lowshelf_biquad_coef( |
|
sample_rate: int, |
|
cutoff_freq: torch.Tensor, |
|
gain: torch.Tensor, |
|
Q: torch.Tensor, |
|
): |
|
|
|
w0 = 2 * torch.pi * cutoff_freq / sample_rate |
|
A = torch.exp(gain / 40.0 * math.log(10)) |
|
alpha = torch.sin(w0) / 2 / Q |
|
cosw0 = torch.cos(w0) |
|
sqrtA = torch.sqrt(A) |
|
|
|
b0 = A * (A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA) |
|
b1 = 2 * A * (A - 1 - (A + 1) * cosw0) |
|
b2 = A * (A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA) |
|
|
|
a0 = A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA |
|
a1 = -2 * (A - 1 + (A + 1) * cosw0) |
|
a2 = A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA |
|
|
|
return b0, b1, b2, a0, a1, a2 |
|
|
|
|
|
def highshelf_biquad_coef( |
|
sample_rate: int, |
|
cutoff_freq: torch.Tensor, |
|
gain: torch.Tensor, |
|
Q: torch.Tensor, |
|
): |
|
|
|
w0 = 2 * torch.pi * cutoff_freq / sample_rate |
|
A = torch.exp(gain / 40.0 * math.log(10)) |
|
alpha = torch.sin(w0) / 2 / Q |
|
cosw0 = torch.cos(w0) |
|
sqrtA = torch.sqrt(A) |
|
|
|
b0 = A * (A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA) |
|
b1 = -2 * A * (A - 1 + (A + 1) * cosw0) |
|
b2 = A * (A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA) |
|
|
|
a0 = A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA |
|
a1 = 2 * (A - 1 - (A + 1) * cosw0) |
|
a2 = A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA |
|
|
|
return b0, b1, b2, a0, a1, a2 |
|
|
|
|
|
highpass_biquad = apply_biquad(highpass_biquad_coef) |
|
lowpass_biquad = apply_biquad(lowpass_biquad_coef) |
|
highshelf_biquad = apply_biquad(highshelf_biquad_coef) |
|
lowshelf_biquad = apply_biquad(lowshelf_biquad_coef) |
|
equalizer_biquad = apply_biquad(equalizer_biquad_coef) |
|
|
|
|
|
def avg(rms: torch.Tensor, avg_coef: torch.Tensor): |
|
assert torch.all(avg_coef > 0) and torch.all(avg_coef <= 1) |
|
|
|
h = rms * avg_coef |
|
|
|
return sample_wise_lpc( |
|
h, |
|
(avg_coef - 1).broadcast_to(h.shape).unsqueeze(-1), |
|
) |
|
|
|
|
|
def avg_rms(audio: torch.Tensor, avg_coef) -> torch.Tensor: |
|
return avg(audio.square().clamp_min(1e-8), avg_coef).sqrt() |
|
|
|
|
|
def compressor_expander( |
|
x: torch.Tensor, |
|
avg_coef: Union[torch.Tensor, float], |
|
cmp_th: Union[torch.Tensor, float], |
|
cmp_ratio: Union[torch.Tensor, float], |
|
exp_th: Union[torch.Tensor, float], |
|
exp_ratio: Union[torch.Tensor, float], |
|
at: Union[torch.Tensor, float], |
|
rt: Union[torch.Tensor, float], |
|
make_up: torch.Tensor, |
|
lookahead_func=lambda x: x, |
|
): |
|
rms = avg_rms(x, avg_coef=avg_coef) |
|
gain = compexp_gain(rms, cmp_th, cmp_ratio, exp_th, exp_ratio, at, rt) |
|
gain = lookahead_func(gain) |
|
return x * gain * db2amp(make_up).broadcast_to(x.shape[0], 1) |
|
|