|
import numpy as np |
|
from numba import njit, prange |
|
from scipy.signal import firwin2 |
|
import torch |
|
|
|
from .fx import Delay, FDN, module2coeffs |
|
|
|
|
|
@njit |
|
def rt_fdn( |
|
x: np.ndarray, |
|
delay_steps: np.ndarray, |
|
firs: np.ndarray, |
|
U: np.ndarray, |
|
): |
|
_, T = x.shape |
|
M = delay_steps.shape[0] |
|
order = firs.shape[1] |
|
y = np.zeros_like(x) |
|
buf_size = delay_steps.max() + order |
|
delay_buf = np.zeros((M, buf_size), dtype=x.dtype) |
|
read_pointer = 0 |
|
|
|
for t in range(T): |
|
|
|
|
|
|
|
out = delay_buf[:, read_pointer] |
|
y[:, t] = out |
|
|
|
s = out * firs[:, 0] |
|
|
|
|
|
|
|
|
|
|
|
for i in prange(M): |
|
for j in prange(1, order): |
|
s[i] += firs[i, j] * delay_buf[i, (read_pointer - j) % buf_size] |
|
|
|
|
|
|
|
feedback = U @ s + x[:, t] |
|
w_pointers = (read_pointer + delay_steps) % buf_size |
|
|
|
for i in prange(M): |
|
delay_buf[i, w_pointers[i]] = feedback[i] |
|
read_pointer = (read_pointer + 1) % buf_size |
|
|
|
return y |
|
|
|
|
|
@njit |
|
def rt_delay( |
|
x: np.ndarray, |
|
delay_step: int, |
|
b0: float, |
|
b1: float, |
|
b2: float, |
|
a1: float, |
|
a2: float, |
|
): |
|
T = x.shape[0] |
|
y = np.zeros((2, T), dtype=x.dtype) |
|
buf_size = delay_step + 1 |
|
read_pointer = 0 |
|
delay_buf = np.zeros((2, buf_size), dtype=x.dtype) |
|
bq_buf = np.zeros((2, 2), dtype=x.dtype) |
|
|
|
for t in range(T): |
|
out = delay_buf[:, read_pointer] |
|
y[:, t] = out |
|
|
|
s = bq_buf[:, 0] + b0 * out |
|
bq_buf[:, 0] = bq_buf[:, 1] + b1 * out - a1 * s |
|
bq_buf[:, 1] = b2 * out - a2 * s |
|
|
|
w_pointer = (read_pointer + delay_step) % buf_size |
|
|
|
delay_buf[0, w_pointer] = s[1] + x[t] |
|
delay_buf[1, w_pointer] = s[0] |
|
|
|
read_pointer = (read_pointer + 1) % buf_size |
|
|
|
return y |
|
|
|
|
|
class RealTimeDelay(Delay): |
|
def forward(self, x): |
|
assert x.size(1) == 1, x.size() |
|
assert x.size(0) == 1, x.size() |
|
with torch.no_grad(): |
|
delay_in_samples = round(self.sr * self.params.delay.item() * 0.001) |
|
feedback = self.params.feedback.item() |
|
|
|
if self.recursive_eq and self.eq is not None: |
|
b0, b1, b2, a0, a1, a2 = [p.item() for p in module2coeffs(self.eq)] |
|
b0, b1, b2, a1, a2 = b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0 |
|
else: |
|
b0, b1, b2, a1, a2 = 1.0, 0.0, 0.0, 0.0, 0.0 |
|
|
|
b0 = b0 * feedback |
|
b1 = b1 * feedback |
|
b2 = b2 * feedback |
|
x_numpy = x.squeeze().cpu().numpy() |
|
y_numpy = rt_delay(x_numpy, delay_in_samples, b0, b1, b2, a1, a2) |
|
y = torch.from_numpy(y_numpy).unsqueeze(0).to(x.device) * self.params.gain |
|
return self.odd_pan(y[:, :1]) + self.even_pan(y[:, 1:]) |
|
|
|
|
|
class RealTimeFDN(FDN): |
|
def forward(self, x): |
|
assert x.size(1) == 2, x.size() |
|
assert x.size(0) == 1, x.size() |
|
with torch.no_grad(): |
|
delays = self.delays if hasattr(self, "delays") else self.params.delays |
|
|
|
c = self.params.c |
|
b = self.params.b |
|
gamma = self.params.gamma.clone() |
|
|
|
if gamma.size(1) == 1: |
|
gamma = gamma ** (delays / delays.min()) |
|
|
|
freqs = np.linspace(0, 1, gamma.size(0)) |
|
firs = np.apply_along_axis( |
|
lambda x: firwin2(gamma.size(0) * 2 - 1, freqs, x, fs=2), |
|
1, |
|
gamma.cpu().numpy().T, |
|
).astype(np.float32) |
|
shifted_delays = delays - firs.shape[1] // 2 |
|
|
|
U = self.params.U |
|
|
|
x = b @ x.squeeze() |
|
|
|
y_numpy = rt_fdn( |
|
x.cpu().numpy(), |
|
|
|
shifted_delays.cpu().numpy(), |
|
|
|
firs, |
|
U.cpu().numpy(), |
|
) |
|
y = c @ torch.from_numpy(y_numpy).to(x.device) |
|
y = y.unsqueeze(0) |
|
|
|
if self.eq is not None: |
|
y = self.eq(y) |
|
return y |
|
|