import os # os.system("pip install 'mmcv-full>=1.3.17,<=1.7.0'") os.system("pip install 'mmcv-full>=1.3.17,<=1.7.0'") os.system("pip install mmdet==2.25.1") os.system("git clone https://github.com/open-mmlab/mmtracking.git") os.system("pip install -r mmtracking/requirements.txt") os.system("pip install -v -e mmtracking/") os.system("pip install 'mmtrack'") import os import os.path as osp import gradio as gr import tempfile from argparse import ArgumentParser import mmcv from mmtrack.apis import inference_mot, init_model def parse_args(): parser = ArgumentParser() parser.add_argument('--config', help='config file') parser.add_argument('--input', help='input video file or folder') parser.add_argument( '--output', help='output video file (mp4 format) or folder') parser.add_argument('--checkpoint', help='checkpoint file') parser.add_argument( '--score-thr', type=float, default=0.0, help='The threshold of score to filter bboxes.') parser.add_argument( '--device', default='cuda:0', help='device used for inference') parser.add_argument( '--show', action='store_true', help='whether show the results on the fly') parser.add_argument( '--backend', choices=['cv2', 'plt'], default='cv2', help='the backend to visualize the results') parser.add_argument('--fps', help='FPS of the output video') args = parser.parse_args() return args def track_mot(input, config, output, device, score_thr): args = parse_args() args.input = input args.config = config args.output = output args.device = device args.score_thr = score_thr args.show = False args.backend = 'cv2' # assert args.output or args.show # load images if osp.isdir(args.input): imgs = sorted( filter(lambda x: x.endswith(('.jpg', '.png', '.jpeg')), os.listdir(args.input)), key=lambda x: int(x.split('.')[0])) IN_VIDEO = False else: imgs = mmcv.VideoReader(args.input) IN_VIDEO = True # define output if args.output is not None: if args.output.endswith('.mp4'): OUT_VIDEO = True out_dir = tempfile.TemporaryDirectory() out_path = out_dir.name _out = args.output.rsplit(os.sep, 1) if len(_out) > 1: os.makedirs(_out[0], exist_ok=True) else: OUT_VIDEO = False out_path = args.output os.makedirs(out_path, exist_ok=True) # fps = args.fps if args.show or OUT_VIDEO: if fps is None and IN_VIDEO: fps = imgs.fps if not fps: raise ValueError('Please set the FPS for the output video.') fps = int(fps) # # build the model from a config file and a checkpoint file model = init_model(args.config, args.checkpoint, device=args.device) prog_bar = mmcv.ProgressBar(len(imgs)) # test and show/save the images for i, img in enumerate(imgs): if isinstance(img, str): img = osp.join(args.input, img) result = inference_mot(model, img, frame_id=i) if args.output is not None: if IN_VIDEO or OUT_VIDEO: out_file = osp.join(out_path, f'{i:06d}.jpg') else: out_file = osp.join(out_path, img.rsplit(os.sep, 1)[-1]) else: out_file = None model.show_result( img, result, score_thr=args.score_thr, show=args.show, wait_time=int(1000. / fps) if fps else 0, out_file=out_file, backend=args.backend) prog_bar.update() if args.output and OUT_VIDEO: print(f'making the output video at {args.output} with a FPS of {fps}') mmcv.frames2video(out_path, args.output, fps=fps, fourcc='mp4v') out_dir.cleanup() # print("output:", out_dir) # return output # print("output:", out_dir) save_dir = 'mot.mp4' return save_dir if __name__ == '__main__': # main() input_video = gr.Video(type="mp4", label="Input Video") config = gr.inputs.Textbox(default="configs/mot/deepsort/sort_faster-rcnn_fpn_4e_mot17-private.py") output = gr.inputs.Textbox(default="mot.mp4", label="Output Video") device = gr.inputs.Radio(choices=["cpu", "cuda"], label="Device used for inference", default="cpu") score_thr = gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.3, label="The threshold of score to filter bboxes.") output_video = gr.Video(type="mp4", label="Output Image") title = "MMTracking web demo" description = "
" \ "

MMTracking MMTracking是一款基于PyTorch的视频目标感知开源工具箱,是OpenMMLab项目的一部分。" \ "OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework..

" article = "

MMTracking

" \ "

gradio build by gatilin

" # Create Gradio interface iface = gr.Interface( fn=track_mot, inputs=[ input_video, config, output, device, score_thr ], # outputs="playable_video", outputs=output_video, title=title, description=description, article=article, ) # Launch Gradio interface iface.launch()