Spaces:
Running
Running
File size: 13,320 Bytes
c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c c2f9ec8 79b5c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
"""
OpenAI-based resume data extraction.
Uses GPT models to extract structured information from resume text.
"""
import json
import re
import logging
from typing import Dict, Any, List, Optional
import openai
from openai import OpenAI
# Set up logging
logger = logging.getLogger(__name__)
class OpenAIResumeExtractor:
"""
Resume data extractor using OpenAI's GPT models.
"""
def __init__(self, api_key: Optional[str] = None, model: str = "gpt-4o"):
"""Initialize with OpenAI API key and model."""
self.client = OpenAI(api_key=api_key) if api_key else OpenAI()
self.model = model
logger.info(f"OpenAI extractor initialized with model: {model}")
def extract_sections_openai(self, text: str) -> Dict[str, Any]:
"""
Extract resume sections using OpenAI API.
Args:
text: Raw resume text
Returns:
Dict containing extracted sections
"""
logger.info("Starting OpenAI extraction...")
try:
# Create extraction prompt
prompt = self._create_extraction_prompt(text)
# Call OpenAI API
response = self.client.chat.completions.create(
model=self.model,
messages=[
{"role": "system", "content": "You are an expert resume parser. Extract information and return ONLY valid JSON."},
{"role": "user", "content": prompt}
],
temperature=0.1,
max_tokens=2000
)
# Parse response
content = response.choices[0].message.content.strip()
logger.debug(f"OpenAI response: {content[:200]}...")
# Clean and parse JSON
content = self._clean_json_response(content)
result = json.loads(content)
# Validate and enhance result
result = self._validate_and_clean_result(result)
# Add contact info extraction
contact_info = self._extract_contact_info(text)
result["ContactInfo"] = contact_info
logger.info("✅ OpenAI extraction completed successfully")
return result
except json.JSONDecodeError as e:
logger.error(f"JSON parsing error: {e}")
logger.debug(f"Response content: {content}")
return self._fallback_extraction(text)
except Exception as e:
logger.error(f"OpenAI extraction failed: {e}")
return self._fallback_extraction(text)
def _clean_json_response(self, content: str) -> str:
"""Clean JSON response from OpenAI."""
# Remove markdown code blocks
content = re.sub(r'```json\s*', '', content)
content = re.sub(r'```\s*$', '', content)
# Remove any text before first {
start = content.find('{')
if start > 0:
content = content[start:]
# Remove any text after last }
end = content.rfind('}')
if end > 0 and end < len(content) - 1:
content = content[:end + 1]
return content.strip()
def _create_extraction_prompt(self, text: str) -> str:
"""Create prompt for OpenAI extraction."""
prompt = f"""
Extract information from this resume and return ONLY valid JSON in this exact format:
{{
"Name": "Full Name with credentials (PhD, MBA, etc.)",
"Summary": "Professional summary or objective",
"Skills": ["skill1", "skill2", "skill3"],
"StructuredExperiences": [
{{
"title": "Job Title",
"company": "Company Name",
"date_range": "Start Date - End Date",
"responsibilities": ["responsibility1", "responsibility2"]
}}
],
"Education": ["degree info", "school info"],
"Training": ["certification1", "training1"],
"Address": "Full address if available"
}}
Resume text:
{text}
CRITICAL INSTRUCTIONS:
- For NAME: Include ALL credentials (PhD, MBA, M.S., B.S., etc.) - example: "John Doe, PhD, MBA"
- Read the ENTIRE resume text carefully, don't miss content
- Extract ALL work experiences with full details
- Return ONLY valid JSON, no explanations
- If a section is not found, use empty string or empty array
- Extract actual technical skills, not company names
"""
return prompt
def _extract_contact_info(self, text: str) -> Dict[str, str]:
"""Extract contact information from resume text."""
contact_info = {}
# Extract email
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
email_match = re.search(email_pattern, text)
if email_match:
contact_info['email'] = email_match.group()
# Extract phone number
phone_patterns = [
r'\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}',
r'\+1[-.\s]?\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}',
r'\d{3}[-.\s]?\d{3}[-.\s]?\d{4}'
]
for pattern in phone_patterns:
phone_match = re.search(pattern, text)
if phone_match:
contact_info['phone'] = phone_match.group().strip()
break
# Extract LinkedIn
linkedin_pattern = r'linkedin\.com/in/[A-Za-z0-9-]+'
linkedin_match = re.search(linkedin_pattern, text)
if linkedin_match:
contact_info['linkedin'] = linkedin_match.group()
logger.info(f"OPENAI: Extracted ContactInfo as dict: {contact_info}")
return contact_info
def _validate_and_clean_result(self, result: Dict[str, Any]) -> Dict[str, Any]:
"""Validate and clean the extraction result."""
# Ensure all required keys exist
required_keys = ["Name", "Summary", "Skills", "StructuredExperiences", "Education", "Training", "Address"]
for key in required_keys:
if key not in result:
result[key] = [] if key in ["Skills", "StructuredExperiences", "Education", "Training"] else ""
# Clean skills - remove company names and duplicates
if result.get("Skills"):
cleaned_skills = []
for skill in result["Skills"]:
skill = skill.strip()
# Skip if it looks like a company name or is too short
if len(skill) > 1 and not self._is_company_name(skill):
cleaned_skills.append(skill)
result["Skills"] = list(set(cleaned_skills)) # Remove duplicates
# Validate experience structure
if result.get("StructuredExperiences"):
cleaned_experiences = []
for exp in result["StructuredExperiences"]:
if isinstance(exp, dict) and exp.get("title") and exp.get("company"):
# Ensure responsibilities is a list
if not isinstance(exp.get("responsibilities"), list):
exp["responsibilities"] = []
cleaned_experiences.append(exp)
result["StructuredExperiences"] = cleaned_experiences
return result
def _is_company_name(self, text: str) -> bool:
"""Check if text looks like a company name rather than a skill."""
company_indicators = [
"inc", "llc", "corp", "ltd", "company", "solutions", "services",
"systems", "technologies", "financial", "insurance"
]
text_lower = text.lower()
return any(indicator in text_lower for indicator in company_indicators)
def _fallback_extraction(self, text: str) -> Dict[str, Any]:
"""Fallback to regex-based extraction if OpenAI fails."""
logger.info("Using regex fallback extraction...")
return {
"Name": self._extract_name_regex(text),
"Summary": self._extract_summary_regex(text),
"Skills": self._extract_skills_regex(text),
"StructuredExperiences": self._extract_experiences_regex(text),
"Education": self._extract_education_regex(text),
"Training": [],
"Address": self._extract_address_regex(text),
"ContactInfo": self._extract_contact_info(text)
}
def _extract_name_regex(self, text: str) -> str:
"""Regex fallback for name extraction."""
lines = text.split('\n')[:5]
for line in lines:
line = line.strip()
if re.search(r'@|phone|email|linkedin|github', line.lower()):
continue
# Match name with potential credentials (PhD, MBA, etc.)
name_match = re.match(r'^([A-Z][a-z]+ [A-Z][a-z]+(?:\s+[A-Z][a-z]+)?(?:,\s*[A-Z][a-z.]+(?:,\s*[A-Z][a-z.]+)?)?)', line)
if name_match:
return name_match.group(1)
return ""
def _extract_summary_regex(self, text: str) -> str:
"""Regex fallback for summary extraction."""
summary_pattern = r'(?i)(?:professional\s+)?summary[:\s]*\n(.*?)(?=\n\s*(?:technical\s+skills?|skills?|experience|education))'
match = re.search(summary_pattern, text, re.DOTALL)
if match:
summary = match.group(1).strip()
summary = re.sub(r'\n+', ' ', summary)
summary = re.sub(r'\s+', ' ', summary)
return summary
return ""
def _extract_skills_regex(self, text: str) -> List[str]:
"""Regex fallback for skills extraction."""
skills = set()
# Look for technical skills section
skills_pattern = r'(?i)technical\s+skills?[:\s]*\n(.*?)(?=\n\s*(?:experience|education|projects?))'
match = re.search(skills_pattern, text, re.DOTALL)
if match:
skills_text = match.group(1)
# Split by common separators
skill_items = re.split(r'[,;]\s*', skills_text.replace('\n', ' '))
for item in skill_items:
item = item.strip()
if item and len(item) > 1 and len(item) < 30:
skills.add(item)
return sorted(list(skills))
def _extract_experiences_regex(self, text: str) -> List[Dict[str, Any]]:
"""Regex fallback for experience extraction."""
experiences = []
# Look for work experience section
exp_pattern = r'(?i)(?:work\s+)?experience[:\s]*\n(.*?)(?=\n\s*(?:education|projects?|certifications?|$))'
match = re.search(exp_pattern, text, re.DOTALL)
if match:
exp_text = match.group(1)
# Look for job entries with | separators
job_pattern = r'([^|\n]+)\s*\|\s*([^|\n]+)\s*\|\s*([^|\n]+)'
matches = re.findall(job_pattern, exp_text)
for match in matches:
title, company, dates = match
responsibilities = []
# Look for bullet points after this job
job_section = exp_text[exp_text.find(f"{title}|{company}|{dates}"):]
bullets = re.findall(r'[-•]\s*([^-•\n]+)', job_section)
responsibilities = [bullet.strip() for bullet in bullets if len(bullet.strip()) > 10]
experience = {
"title": title.strip(),
"company": company.strip(),
"date_range": dates.strip(),
"responsibilities": responsibilities
}
experiences.append(experience)
return experiences
def _extract_education_regex(self, text: str) -> List[str]:
"""Regex fallback for education extraction."""
education = []
edu_pattern = r'(?i)education[:\s]*\n(.*?)(?=\n\s*(?:certifications?|projects?|$))'
match = re.search(edu_pattern, text, re.DOTALL)
if match:
edu_text = match.group(1)
edu_lines = [line.strip() for line in edu_text.split('\n') if line.strip()]
for line in edu_lines:
if len(line) > 10: # Filter out short lines
education.append(line)
return education
def _extract_address_regex(self, text: str) -> str:
"""Regex fallback for address extraction."""
# Look for address patterns like "6001 Tain Dr. Suite 203, Dublin, OH, 43016"
address_patterns = [
r'(\d+\s+[A-Za-z\s\.]+(?:Suite|Apt|Unit)\s+\d+,?\s*[A-Za-z\s]+,\s*[A-Z]{2}\s*\d{5})',
r'(\d+\s+[A-Za-z\s\.]+,?\s*[A-Za-z\s]+,\s*[A-Z]{2}\s*\d{5})',
r'([A-Za-z\s\d\.]+,\s*[A-Za-z\s]+,\s*[A-Z]{2}\s*\d{5})'
]
for pattern in address_patterns:
match = re.search(pattern, text)
if match:
return match.group(1).strip()
return ""
# Main extraction function for compatibility
def extract_sections_openai(text: str, api_key: Optional[str] = None) -> Dict[str, Any]:
"""Extract resume sections using OpenAI API."""
extractor = OpenAIResumeExtractor(api_key=api_key)
return extractor.extract_sections_openai(text) |