File size: 14,487 Bytes
b20c0ea
0ef105d
b20c0ea
 
 
 
 
 
 
c2f47fd
2187315
a3e6550
2187315
a3c8137
2187315
 
b20c0ea
a3c8137
 
 
a3e6550
 
 
a3c8137
a3e6550
 
 
a3c8137
a3e6550
a3c8137
 
a3e6550
 
 
 
a3c8137
a3e6550
 
 
 
a3c8137
a3e6550
 
 
 
a3c8137
 
a3e6550
a3c8137
 
1974dbd
a3c8137
a3e6550
 
b20c0ea
c2f47fd
 
 
 
 
b20c0ea
a3c8137
a3e6550
a3c8137
a3e6550
 
 
a3c8137
a3e6550
 
a3c8137
 
a3e6550
a3c8137
2187315
a3e6550
2187315
a3c8137
a3e6550
 
 
a3c8137
a3e6550
2187315
a3c8137
 
 
 
 
 
 
 
a3e6550
a3c8137
 
 
2187315
a3c8137
a3e6550
 
a3c8137
a3e6550
2187315
 
a3c8137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2187315
a3e6550
c2f47fd
2187315
c2f47fd
2187315
 
 
a3e6550
 
 
c2f47fd
2187315
 
 
a3c8137
b20c0ea
a3c8137
b20c0ea
a499933
c2f47fd
 
 
 
 
3934656
b20c0ea
c2f47fd
 
b20c0ea
1974dbd
 
c2f47fd
1974dbd
c2f47fd
 
 
 
 
1974dbd
 
8b5dff8
ef66abf
b20c0ea
 
 
 
 
 
c2f47fd
a3c8137
c2f47fd
1974dbd
c2f47fd
1974dbd
a3c8137
 
2187315
1974dbd
a3c8137
 
c2f47fd
a3c8137
c2f47fd
a3e6550
c2f47fd
1974dbd
 
 
 
 
 
 
a3c8137
c2f47fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3c8137
 
 
c2f47fd
 
 
a3c8137
c2f47fd
1974dbd
a3c8137
c2f47fd
a3c8137
2187315
 
 
a3c8137
2187315
c2f47fd
 
 
 
 
a3c8137
c2f47fd
 
a3c8137
c2f47fd
 
 
 
 
 
 
 
a3c8137
 
1974dbd
a3c8137
c2f47fd
 
 
a3c8137
 
1974dbd
a3c8137
c2f47fd
 
 
a3c8137
 
c2f47fd
a3c8137
c2f47fd
a3c8137
1974dbd
c2f47fd
1974dbd
a3c8137
c2f47fd
a3c8137
1974dbd
a3c8137
 
b20c0ea
1974dbd
a3c8137
 
a3e6550
b20c0ea
1974dbd
a3c8137
1974dbd
 
a3c8137
1974dbd
 
c2f47fd
 
 
a3c8137
 
 
 
 
 
 
 
c2f47fd
a3c8137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1974dbd
c2f47fd
a3c8137
 
 
 
1974dbd
 
 
a3c8137
b7029f7
c2f47fd
a3c8137
b7029f7
c2f47fd
a3c8137
c2f47fd
a3c8137
b7029f7
1974dbd
b20c0ea
a3e6550
b20c0ea
 
 
 
 
 
 
c2f47fd
 
b20c0ea
 
a3c8137
c2f47fd
 
 
 
 
 
 
 
 
 
a3c8137
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
from typing import Optional
import spaces
import gradio as gr
import numpy as np
import torch
from PIL import Image
import io
import base64, os
from huggingface_hub import snapshot_download
import traceback
import warnings
import sys

# Suppress warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*_supports_sdpa.*")

# Simple monkey patch for transformers - avoid recursion
def simple_patch_transformers():
    """Simple patch to fix _supports_sdpa issue"""
    try:
        import transformers.modeling_utils as modeling_utils
        
        # Store original method
        original_check = modeling_utils.PreTrainedModel._check_and_adjust_attn_implementation
        
        def patched_check(self, *args, **kwargs):
            # Simply set the attribute if it doesn't exist
            if not hasattr(self, '_supports_sdpa'):
                object.__setattr__(self, '_supports_sdpa', False)
            
            try:
                return original_check(self, *args, **kwargs)
            except AttributeError as e:
                if '_supports_sdpa' in str(e):
                    # Return default attention implementation
                    return "eager"
                raise
        
        modeling_utils.PreTrainedModel._check_and_adjust_attn_implementation = patched_check
        print("Applied simple transformers patch")
        
    except Exception as e:
        print(f"Warning: Could not patch transformers: {e}")

# Apply the patch BEFORE importing utils
simple_patch_transformers()

# Now import the utils
from util.utils import check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img

# Download repository
repo_id = "microsoft/OmniParser-v2.0"
local_dir = "weights"

if not os.path.exists(local_dir):
    snapshot_download(repo_id=repo_id, local_dir=local_dir)
    print(f"Repository downloaded to: {local_dir}")
else:
    print(f"Weights already exist at: {local_dir}")

# Custom function to load caption model
def load_caption_model_safe(model_name="florence2", model_name_or_path="weights/icon_caption"):
    """Safely load caption model"""
    
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    # Method 1: Try original function
    try:
        return get_caption_model_processor(model_name, model_name_or_path)
    except Exception as e:
        print(f"Original loading failed: {e}, trying alternative...")
    
    # Method 2: Load with specific configs
    try:
        from transformers import AutoProcessor, AutoModelForCausalLM
        
        print(f"Loading caption model from {model_name_or_path}...")
        
        processor = AutoProcessor.from_pretrained(
            model_name_or_path,
            trust_remote_code=True
        )
        
        # Load model with safer config
        model = AutoModelForCausalLM.from_pretrained(
            model_name_or_path,
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
            trust_remote_code=True,
            attn_implementation="eager",  # Use eager attention
            low_cpu_mem_usage=True
        )
        
        # Ensure attribute exists (using object.__setattr__ to avoid recursion)
        if not hasattr(model, '_supports_sdpa'):
            object.__setattr__(model, '_supports_sdpa', False)
        
        if device.type == 'cuda':
            model = model.to(device)
        
        print("Model loaded successfully with alternative method")
        return {'model': model, 'processor': processor}
        
    except Exception as e:
        print(f"Alternative loading also failed: {e}")
        
    # Method 3: Manual loading as last resort
    try:
        print("Attempting manual model loading...")
        
        # Import required modules
        from transformers import AutoProcessor, AutoConfig
        import importlib.util
        
        # Load processor
        processor = AutoProcessor.from_pretrained(
            model_name_or_path,
            trust_remote_code=True
        )
        
        # Load config
        config = AutoConfig.from_pretrained(
            model_name_or_path,
            trust_remote_code=True
        )
        
        # Manually import and instantiate model
        model_file = os.path.join(model_name_or_path, "modeling_florence2.py")
        if os.path.exists(model_file):
            spec = importlib.util.spec_from_file_location("modeling_florence2_custom", model_file)
            module = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(module)
            
            # Get model class
            if hasattr(module, 'Florence2ForConditionalGeneration'):
                model_class = module.Florence2ForConditionalGeneration
                
                # Create model instance
                model = model_class(config)
                
                # Set the attribute before loading weights
                object.__setattr__(model, '_supports_sdpa', False)
                
                # Load weights
                weight_file = os.path.join(model_name_or_path, "model.safetensors")
                if os.path.exists(weight_file):
                    from safetensors.torch import load_file
                    state_dict = load_file(weight_file)
                    model.load_state_dict(state_dict, strict=False)
                
                if device.type == 'cuda':
                    model = model.to(device)
                    model = model.half()  # Use half precision
                
                print("Model loaded successfully with manual method")
                return {'model': model, 'processor': processor}
        
    except Exception as e:
        print(f"Manual loading failed: {e}")
        raise RuntimeError(f"Could not load model with any method: {e}")

# Load models
try:
    print("Loading YOLO model...")
    yolo_model = get_yolo_model(model_path='weights/icon_detect/model.pt')
    print("YOLO model loaded successfully")
    
    print("Loading caption model...")
    caption_model_processor = load_caption_model_safe()
    print("Caption model loaded successfully")
    
except Exception as e:
    print(f"Critical error loading models: {e}")
    print(traceback.format_exc())
    caption_model_processor = None
    yolo_model = None

# UI Configuration
MARKDOWN = """
# OmniParser V2 Pro🔥

<div style="background-color: #f0f8ff; padding: 15px; border-radius: 10px; margin-bottom: 20px;">
    <p style="margin: 0;">🎯 <strong>AI-powered screen understanding tool</strong> that detects UI elements and extracts text with high accuracy.</p>
    <p style="margin: 5px 0 0 0;">📝 Supports both PaddleOCR and EasyOCR for flexible text extraction.</p>
</div>
"""

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {DEVICE}")

custom_css = """
body { background-color: #f0f2f5; }
.gradio-container { font-family: 'Segoe UI', sans-serif; max-width: 1400px; margin: auto; }
h1, h2, h3, h4 { color: #283E51; }
button { border-radius: 6px; transition: all 0.3s ease; }
button:hover { transform: translateY(-2px); box-shadow: 0 4px 12px rgba(0,0,0,0.15); }
.output-image { border: 2px solid #e1e4e8; border-radius: 8px; }
#input_image { border: 2px dashed #4a90e2; border-radius: 8px; }
#input_image:hover { border-color: #2c5aa0; }
"""

@spaces.GPU
@torch.inference_mode()
def process(
    image_input,
    box_threshold,
    iou_threshold,
    use_paddleocr,
    imgsz
) -> tuple:
    """Process image with error handling"""
    
    if image_input is None:
        return None, "⚠️ Please upload an image for processing."
    
    if caption_model_processor is None or yolo_model is None:
        return None, "⚠️ Models not loaded properly. Please restart the application."
    
    try:
        print(f"Processing: box_threshold={box_threshold}, iou_threshold={iou_threshold}, "
              f"use_paddleocr={use_paddleocr}, imgsz={imgsz}")
        
        # Calculate overlay ratio
        image_width = image_input.size[0]
        box_overlay_ratio = max(0.5, min(2.0, image_width / 3200))
        
        draw_bbox_config = {
            'text_scale': 0.8 * box_overlay_ratio,
            'text_thickness': max(int(2 * box_overlay_ratio), 1),
            'text_padding': max(int(3 * box_overlay_ratio), 1),
            'thickness': max(int(3 * box_overlay_ratio), 1),
        }
    
        # OCR processing
        try:
            ocr_bbox_rslt, is_goal_filtered = check_ocr_box(
                image_input, 
                display_img=False, 
                output_bb_format='xyxy', 
                goal_filtering=None, 
                easyocr_args={'paragraph': False, 'text_threshold': 0.9}, 
                use_paddleocr=use_paddleocr
            )
            
            if ocr_bbox_rslt is None:
                text, ocr_bbox = [], []
            else:
                text, ocr_bbox = ocr_bbox_rslt
                
            text = text if text is not None else []
            ocr_bbox = ocr_bbox if ocr_bbox is not None else []
            
            print(f"OCR found {len(text)} text regions")
            
        except Exception as e:
            print(f"OCR error: {e}")
            text, ocr_bbox = [], []
    
        # Object detection and captioning
        try:
            # Ensure model has _supports_sdpa attribute
            if isinstance(caption_model_processor, dict) and 'model' in caption_model_processor:
                model = caption_model_processor['model']
                if not hasattr(model, '_supports_sdpa'):
                    object.__setattr__(model, '_supports_sdpa', False)
            
            dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
                image_input, 
                yolo_model, 
                BOX_TRESHOLD=box_threshold, 
                output_coord_in_ratio=True, 
                ocr_bbox=ocr_bbox,
                draw_bbox_config=draw_bbox_config, 
                caption_model_processor=caption_model_processor, 
                ocr_text=text,
                iou_threshold=iou_threshold, 
                imgsz=imgsz
            )
            
            if dino_labled_img is None:
                raise ValueError("Failed to generate labeled image")
                
        except Exception as e:
            print(f"Detection error: {e}")
            return image_input, f"⚠️ Error during detection: {str(e)}"
    
        # Decode image
        try:
            image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
        except Exception as e:
            print(f"Image decode error: {e}")
            return image_input, f"⚠️ Error decoding image: {str(e)}"
    
        # Format results
        if parsed_content_list and len(parsed_content_list) > 0:
            parsed_text = "🎯 **Detected Elements:**\n\n"
            for i, v in enumerate(parsed_content_list):
                if v:
                    parsed_text += f"**Element {i}:** {v}\n"
        else:
            parsed_text = "ℹ️ No UI elements detected. Try adjusting the thresholds."
        
        print(f'Processing complete. Found {len(parsed_content_list)} elements.')
        return image, parsed_text
        
    except Exception as e:
        print(f"Processing error: {e}")
        print(traceback.format_exc())
        return None, f"⚠️ Error: {str(e)}"

# Build UI
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
    gr.Markdown(MARKDOWN)
    
    if caption_model_processor is None or yolo_model is None:
        gr.Markdown("### ⚠️ Warning: Models failed to load. Please check logs.")
    
    with gr.Row():
        with gr.Column(scale=1):
            with gr.Accordion("📤 Upload & Settings", open=True):
                image_input_component = gr.Image(
                    type='pil', 
                    label='Upload Screenshot',
                    elem_id="input_image"
                )
                
                gr.Markdown("### 🎛️ Detection Settings")
                
                box_threshold_component = gr.Slider(
                    label='Box Threshold', 
                    minimum=0.01, 
                    maximum=1.0, 
                    step=0.01, 
                    value=0.05,
                    info="Lower = more detections"
                )
                
                iou_threshold_component = gr.Slider(
                    label='IOU Threshold', 
                    minimum=0.01, 
                    maximum=1.0, 
                    step=0.01, 
                    value=0.1,
                    info="Overlap filtering"
                )
                
                use_paddleocr_component = gr.Checkbox(
                    label='Use PaddleOCR', 
                    value=True
                )
                
                imgsz_component = gr.Slider(
                    label='Image Size', 
                    minimum=640, 
                    maximum=1920, 
                    step=32, 
                    value=640
                )
                
                submit_button_component = gr.Button(
                    value='🚀 Process', 
                    variant='primary'
                )
        
        with gr.Column(scale=2):
            with gr.Tabs():
                with gr.Tab("🖼️ Result"):
                    image_output_component = gr.Image(
                        type='pil', 
                        label='Annotated Image'
                    )
                    
                with gr.Tab("📝 Elements"):
                    text_output_component = gr.Markdown(
                        value="*Results will appear here...*"
                    )
    
    submit_button_component.click(
        fn=process,
        inputs=[
            image_input_component,
            box_threshold_component,
            iou_threshold_component,
            use_paddleocr_component,
            imgsz_component
        ],
        outputs=[image_output_component, text_output_component],
        show_progress=True
    )

# Launch
if __name__ == "__main__":
    try:
        demo.queue(max_size=10)
        demo.launch(
            share=False,
            show_error=True,
            server_name="0.0.0.0",
            server_port=7860
        )
    except Exception as e:
        print(f"Launch failed: {e}")